题外话
Unet是受到FCN启发针对医学图像做语义分割,且可以利用少量的数据学习到一个对边缘提取十分鲁棒的模型,在生物医学图像分割领域有很大作用。
网络架构
这就是整个网络的结构,大体分为收缩和扩张路径来组成。因为形似一个字母U,得名Unet。收缩路径仍然是利用传统卷积神经网络的卷积池化组件,其中经过一次下采样之后,channels变为原来的2倍。扩张路径由2 * 2的反卷积,反卷机的输出通道为原来通道数的一半,再与原来的feature map(裁剪之后)串联,得到和原来一样多的通道数的feature map,再经过2个尺寸为3 * 3的卷积和ReLU的作用。裁剪特征图是必要的,因为在卷积的过程中会有边界像素的丢失。在最后一层通过卷积核大小为1 * 1的卷积作用得到想要的目标种类。在Unet中一共有23个卷积层。但是这个网络需要谨慎的选择输入图片的尺寸,以保证所有的Max Pooling操作作用于长宽为偶数的feature map。
Trick1: 对于尺寸较大的图像:Overlap-tile strategy
\quad