时序资料汇总:模型和常见库对比

本文介绍了时间序列分析的基本任务,如预测、分类和异常检测,并概述了常用Python库及其功能,同时还列举了一些重要的时间序列模型及数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Part1 领域介绍

Time series is a series of data points indexed in time order.

时间序列分析具体包括的任务:

  • 检索Indexing (query by content): given a time series and some similarity measure, find the nearest matching time series.
  • 聚类Clustering: find groups (clusters) of similar time series.
  • 分类Classification: assign a time series to a predefined class.
  • 分割Segmentation (Summarization): create an accurate approximation of a time series by reducing its dimensionality while retaining its essential features.
  • 预测Forecasting (Prediction): given a time series dataset up to a given time tn, forecast the next values.
  • 异常检测Anomaly Detection: find abnormal data points or subsequences.
  • 因果分析Rules Discovery: find the rules that may govern associations between sets of time series or subsequences

推荐教材

推荐公开课

  • Intel 时间序列分析:讲授时间序列分析,以及用于预测、处理和识别顺序数据的方法。
    • 时间序列和平稳数据简介
    • 数据平滑化、自相关性和自回归积分滑动平均 (ARIMA) 模型等应用
    • 高级时间序列概念,如卡尔曼滤波器 (Kalman Filter) 和傅里叶变换 (Fourier Transformation)
    • 用于时间序列分析的深度学习架构和方法

Part2 时序Python库

ForecastingClasssificationAnomaly DetectionSegmentationTSFeature
Prophet
Kats
GluonTS
NeuralProphet
arch
AtsPy
banpei
cesium
darts
PaddleTS

更多的模型介绍可以查阅论文[arxiv 2021]A systematic review of Python packages for time series analysis.

Part3 相关模型

Time Series Forecasting

ModelUnivariateMultivariateProbabilisticMultiple-series training
ARIMA
VARIMA
AutoARIMA
ExponentialSmoothing
Theta and FourTheta
Prophet
FFT (Fast Fourier Transform)
RegressionModel (incl RandomForest, LinearRegressionModel and LightGBMModel)
RNNModel (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version
BlockRNNModel (incl. LSTM and GRU)
NBEATSModel
TCNModel
TransformerModel
TFTModel (Temporal Fusion Transformer)
Naive Baselines

Time Series Classification

Anomaly Detection

  • [AAAI 2022] Towards a Rigorous Evaluation of Time-series Anomaly Detection

Time Series Representation

  • [AAAI 2022] TS2Vec: Towards Universal Representation of Time Series

Data Augmentation

Part4 时序数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值