13、Node.js 网络、套接字与安全开发指南

Node.js 网络、套接字与安全开发指南

1. 流与管道操作

在 Node.js 中,流操作是处理数据的重要方式。例如,将文件压缩并传输到服务器的代码如下:

req.on('error', function(e) {
    console.log('problem with request: ' + e.message);
}); 

// stream gzipped file to server
var readable = fs.createReadStream('./test.png');
readable.pipe(gzip).pipe(req);

客户端打开待压缩的文件,通过管道将其传输到 Zlib 压缩转换流,再将结果传输到网络请求(可写流)。这里纯粹使用流,所以可以利用之前提到的 pipe() 功能。但在服务器端不能这样使用,因为数据是以缓冲区块的形式传输的。

另外,缓冲文件到内存可能会导致扩展性问题,另一种方法是保存未压缩的文件,进行解压缩,然后删除临时的未压缩文件,这可以作为一个额外的练习。

2. 管道与 ReadLine 模块

在之前的操作中,我们多次使用了管道。一个简单的管道示例是在 REPL 会话中输入以下内容:

> process.stdin.resume();
> process.stdin.pipe(process.stdout);
<
【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练分类,实现对不同类型扰动的自动识别准确区分。该方法充分发挥DWT在信号去噪特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性效率,为后续的电能治理设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值