CF894B:Ralph And His Magic Field(思维)

探讨如何用1和-1填满n*m的矩阵,确保每一行每一列的乘积为k,输出方案数并模1e9+7。通过分析矩阵填充规律,利用快速幂求解。

B. Ralph And His Magic Field
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Ralph has a magic field which is divided into n × m blocks. That is to say, there are n rows and m columns on the field. Ralph can put an integer in each block. However, the magic field doesn't always work properly. It works only if the product of integers in each row and each column equals to k, where k is either 1 or -1.

Now Ralph wants you to figure out the number of ways to put numbers in each block in such a way that the magic field works properly. Two ways are considered different if and only if there exists at least one block where the numbers in the first way and in the second way are different. You are asked to output the answer modulo 1000000007 = 109 + 7.

Note that there is no range of the numbers to put in the blocks, but we can prove that the answer is not infinity.

Input

The only line contains three integers nm and k (1 ≤ n, m ≤ 1018k is either 1 or -1).

Output

Print a single number denoting the answer modulo 1000000007.

Examples
input
1 1 -1
output
1
input
1 3 1
output
1
input
3 3 -1
output
16
Note

In the first example the only way is to put -1 into the only block.

In the second example the only way is to put 1 into every block.


题意:用1和-1填满n*m的矩阵,令到每一行每一列的乘积为k,输出方案数mod 1e9+7。

思路:先不考虑最后一行和最后一列,任意填充前(n-1)*(m-1)个格,那么最后一行和最后一列显然可以填上1或-1使得每行每列都等于k,那么右下角那个格子呢?设前(n-1)*(m-1)个格乘积为sum,对于列来说,右下角填上A=k^(n-1)*sum,对于行来说右下角填上B=k^(m-1)*sum。那么显然如果k=-1,且n和m奇偶性不同时A不等于B,其余情况都能满足。答案就是pow(2, (n-1)*(m-1)),范围太大用欧拉降幂。

# include <iostream>
# include <cstdio>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
LL qmod(LL a, LL b)
{
    LL ans = 1;
    for(;b;b>>=1)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
    }
    return ans;
}
int main()
{
    LL n, m, k;
    scanf("%lld%lld%lld",&n,&m,&k);
    if(k == -1 && (n&1)!=(m&1)) return 0*puts("0");
    n = (n-1)%(mod-1);
    m = (m-1)%(mod-1);
    printf("%lld\n",qmod(2LL,n*m%(mod-1)+mod-1));
    return 0;
}




评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值