HDU2647:Reward(拓扑排序)

解决一个工厂老板如何用最少的花费满足员工间的相对薪资要求的问题。通过拓扑排序算法,确保每位员工的薪资至少为888,并且符合指定的薪资高低顺序。

Reward

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9472    Accepted Submission(s): 3036


Problem Description
Dandelion's uncle is a boss of a factory. As the spring festival is coming , he wants to distribute rewards to his workers. Now he has a trouble about how to distribute the rewards.
The workers will compare their rewards ,and some one may have demands of the distributing of rewards ,just like a's reward should more than b's.Dandelion's unclue wants to fulfill all the demands, of course ,he wants to use the least money.Every work's reward will be at least 888 , because it's a lucky number.
 

Input
One line with two integers n and m ,stands for the number of works and the number of demands .(n<=10000,m<=20000)
then m lines ,each line contains two integers a and b ,stands for a's reward should be more than b's.
 

Output
For every case ,print the least money dandelion 's uncle needs to distribute .If it's impossible to fulfill all the works' demands ,print -1.
 

Sample Input
  
2 1 1 2 2 2 1 2 2 1
 

Sample Output
  
1777 -1
 

Author
dandelion
 

Source

题意:给N个人发功资,有M个工资关系关系,a比b的工资一定要多,底薪为888,问工资支出总和的最小值,不行就输出-1.

思路:拓扑排序,反向建边,从工资最低的人开始发起,判断下成环的情况即可。

# include <iostream>
# include <cstdio>
# include <cstdlib>
# include <cstring>
# include <vector>
# define pb push_back
using namespace std;
const int maxn = 1e4+30;
int n, a[maxn], in[maxn], q[maxn<<1];
vector<int>v[maxn];
long long ans;
void solve()
{
    int icount = 0;
    ans = 0;
    int l=0, r=0;
    for(int i=1; i<=n; ++i)
        if(in[i] == 0)
            q[r++] = i, a[i] = 888, ans += 888, ++icount;
    if(ans == 0) {ans = -1;return;}
    while(l<r)
    {
        int u = q[l++];
        for(int i=0; i<v[u].size(); ++i)
        {
            if(in[v[u][i]] == 0) if(a[v[u][i]] <= a[u]) {ans = -1;return;}
            if(--in[v[u][i]] == 0)
            {
                a[v[u][i]] = a[u]+1;
                ans += a[v[u][i]];
                ++icount;
                q[r++] = v[u][i];
            }
        }
    }
    if(icount < n) ans = -1;//icount记录已经处理的员工数。
}
int main()
{
    int m;
    while(~scanf("%d%d",&n,&m))
    {
        memset(a, 0, sizeof(a));
        memset(in, 0, sizeof(in));
        for(int i=1; i<=n; ++i) v[i].clear();
        while(m--)
        {
            int a, b;
            scanf("%d%d",&a,&b);
            v[b].pb(a);
            ++in[a];
        }
        solve();
        printf("%lld\n",ans);
    }
    return 0;
}



内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值