HDU3652:B-number(数位dp + 同余)

本文介绍了一种求解特定范围内包含子串'13'且能被13整除的非负整数个数的方法。通过动态规划实现,讨论了递归搜索策略,并给出了一段C语言代码实例。

B-number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5639    Accepted Submission(s): 3248


Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
 

Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
 

Output
Print each answer in a single line.
 

Sample Input
  
13 100 200 1000
 

Sample Output
  
1 1 2 2
 

Author
wqb0039
 

Source
题意i:求1~n中包含13且能被13整除的数的个数。

思路:见代码。

# include <stdio.h>
# include <string.h>
int a[11], dp[11][14][2][2];//dp[数位][上一位取模结果][是否已包含13][上一位是否为1]。
int dfs(int pos, int num, int pre, int sta, bool limit)
{
    if(pos==-1)
        return sta && num==0;
    if(!limit && (dp[pos][num][sta][pre==1] != -1))
        return dp[pos][num][sta][pre==1];
    int up = limit?a[pos]:9;
    int tmp = 0;
    for(int i=0; i<=up; ++i)
            tmp += dfs(pos-1, (num*10+i)%13, i, (pre==1&&i==3)||sta, limit&&(i==a[pos]));
    if(!limit)
        dp[pos][num][sta][pre==1] = tmp;
    return tmp;

}
int solve(int num)
{
    int cnt = 0;
    while(num)
    {
        a[cnt++] = num%10;
        num /= 10;
    }
    return dfs(cnt-1, 0, 0, 0, true);
}
int main()
{
    int n;
    memset(dp, -1, sizeof(dp));
    while(~scanf("%d",&n))
        printf("%d\n",solve(n));
    return 0;
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值