reference映射简介
在本文中,我们首先构建一个reference,然后演示如何利用该reference来注释新的查询数据集。生成后,该reference可用于通过cell类型标签传输和将查询cell投影到reference UMAP 等任务来分析其他查询数据集。值得注意的是,这不需要纠正底层原始查询数据,因此如果有高质量的reference可用,这可能是一种有效的策略。
数据集预处理
出于本示例的目的,我们选择了通过四种技术生成的人类胰岛细胞数据集:CelSeq (GSE81076) CelSeq2 (GSE85241)、Fluidigm C1 (GSE86469) 和 SMART-Seq2 (E-MTAB-5061)。为了方便起见,我们通过 SeuratData 包分发此数据集。元数据包含四个数据集中每个细胞的技术(技术列)和细胞类型注释(细胞类型列)。
library(Seurat)
library(SeuratData)
library(ggplot2)
InstallData("panc8")
作为演示,我们将使用各种技术来构建参考。然后,我们将剩余的数据集映射到该参考上。我们首先从四种技术中选择cell,并在不进行整合的情况下进行分析。
接下来,我们将数据集整合到reference中。
pancreas.ref <- IntegrateLayers(object = pancreas.ref, method = CCAInte