PAT (Advanced Level) Practise 1126 Eulerian Path (25)

本文介绍了一种通过并查集判断图的连通性,并结合顶点度数来确定图是否包含欧拉路径或欧拉回路的方法。给出了具体的输入输出样例及实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1126. Eulerian Path (25)

时间限制
300 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3

Non-Eulerian

判断一张图是否有欧拉回路,欧拉路径.先用并查集判断连通性,之后判断每个点的度数即可。

#include<map> 
#include<set>
#include<ctime>  
#include<cmath>      
#include<queue>   
#include<string>  
#include<vector>  
#include<cstdio>      
#include<cstring>    
#include<iostream>  
#include<algorithm>      
#include<functional>  
using namespace std;
#define ms(x,y) memset(x,y,sizeof(x))      
#define rep(i,j,k) for(int i=j;i<=k;i++)      
#define per(i,j,k) for(int i=j;i>=k;i--)      
#define loop(i,j,k) for (int i=j;i!=-1;i=k[i])      
#define inone(x) scanf("%d",&x)      
#define intwo(x,y) scanf("%d%d",&x,&y)      
#define inthr(x,y,z) scanf("%d%d%d",&x,&y,&z)    
#define infou(x,y,z,p) scanf("%d%d%d%d",&x,&y,&z,&p)   
#define lson x<<1,l,mid  
#define rson x<<1|1,mid+1,r  
#define mp(i,j) make_pair(i,j)  
#define ft first  
#define sd second  
typedef long long LL;
typedef pair<int, int> pii;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int N = 3e5 + 10;
const double eps = 1e-10;
int n, m, x, y, cnt[N], fa[N], tot, odd;

int get(int x) { return x == fa[x] ? x : fa[x] = get(fa[x]); }

int main()
{
  intwo(n, m);
  rep(i, 1, n) fa[i] = i, cnt[i] = 0;
  tot = n - 1; odd = 0;
  rep(i, 1, m)
  {
    intwo(x, y);
    cnt[x]++; cnt[y]++;
    int fx = get(x), fy = get(y);
    if (fx == fy) continue;
    fa[fx] = fy; tot--;
  }
  rep(i, 1, n)
  {
    if (cnt[i] & 1) odd++;
    printf("%d%s", cnt[i], i == n ? "\n" : " ");
  }
  if (!tot && (!odd || odd == 2))
    puts(odd ? "Semi-Eulerian" : "Eulerian");
  else  puts("Non-Eulerian");
  return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值