HDU 5742 It's All In The Mind

本文描述了一个关于寻找特定数列中最大比值的问题。教授张有一组非递增的数列,部分数值未知,需要计算在给定约束条件下,数列前两项之和与数列总和比值的最大值,并以最简分数形式给出答案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Professor Zhang has a number sequence a1,a2,...,an. However, the sequence is not complete and some elements are missing. Fortunately, Professor Zhang remembers some properties of the sequence:

1. For every i{1,2,...,n}0ai100.
2. The sequence is non-increasing, i.e. a1a2...an.
3. The sum of all elements in the sequence is not zero.

Professor Zhang wants to know the maximum value of a1+a2ni=1ai among all the possible sequences.
 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first contains two integers n and m (2n100,0mn) -- the length of the sequence and the number of known elements.

In the next m lines, each contains two integers xi and yi (1xin,0yi100,xi<xi+1,yiyi+1), indicating that axi=yi.
 

Output
For each test case, output the answer as an irreducible fraction "p/q", where pq are integers, q>0.
 

Sample Input
2 2 0 3 1 3 1
 

Sample Output
1/1 200/201

尽量让前两个大,后面的小即可。

#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<bitset>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
using namespace std;
typedef long long LL;
const int low(int x) { return x&-x; }
const int N = 1e2 + 10;
const int mod = 1e9 + 7;
const int INF = 0x7FFFFFFF;
int T, n, m, f[N], x, y, a, b;

int gcd(int x, int y) { return x%y ? gcd(y, x%y) : y; }
int main()
{
    scanf("%d", &T);
    while (T--)
    {
        scanf("%d%d", &n, &m);
        memset(f, -1, sizeof(f));
        a = b = 0;
        while (m--)
        {
            scanf("%d%d", &x, &y);
            f[x] = y;
        }
        if (f[1] == -1) f[1] = 100;
        if (f[2] == -1) f[2] = f[1];
        a = f[1] + f[2];
        per(i, n, 1)
        {
            if (f[i] == -1) f[i] = 0;
            f[i] = max(f[i], f[i + 1]);
            b += f[i];
        }
        printf("%d/%d\n", a / gcd(a, b), b / gcd(a, b));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值