PAT (Advanced Level) Practise 1085 Perfect Sequence (25)

本文探讨了在给定整数序列和参数p的情况下,如何找出最多可以形成完美子序列的整数数量。通过排序和双指针法,实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1085. Perfect Sequence (25)

时间限制
300 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CAO, Peng

Given a sequence of positive integers and another positive integer p. The sequence is said to be a "perfect sequence" if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.

Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.

Input Specification:

Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.

Output Specification:

For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.

Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8
搞两个指针循环一下就好了。
#include<cstdio>
#include<stack>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + 10;
int n, p, a[maxn], ans;

int main()
{
	scanf("%d%d", &n, &p);
	for (int i = 0; i < n; i++) scanf("%d", &a[i]);
	sort(a, a + n);
	for (int i = 0, j = 0; i < n; i++)
	{
		while (j < n && (LL)a[j] <= (LL)a[i] * p) j++;
		ans = max(j - i, ans);
	}
	printf("%d\n", ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值