HDU 5638 Toposort

Problem Description
There is a directed acyclic graph with n vertices and m edges. You are allowed to delete exact k edges in such way that the lexicographically minimal topological sort of the graph is minimum possible.
 

Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains three integers nm and k (1n100000,0km200000) -- the number of vertices, the number of edges and the number of edges to delete.

For the next m lines, each line contains two integers ui and vi, which means there is a directed edge from ui to vi (1ui,vin).

You can assume the graph is always a dag. The sum of values of n in all test cases doesn't exceed 106. The sum of values of m in all test cases doesn't exceed 2×106.
 

Output
For each test case, output an integer S=(i=1nipi) mod (109+7), where p1,p2,...,pn is the lexicographically minimal topological sort of the graph.
 

Sample Input
3 4 2 0 1 2 1 3 4 5 1 2 1 3 1 4 1 2 3 2 4 4 4 2 1 2 2 3 3 4 1 4
 

Sample Output
30 27 30
 
有向图删除k条边使得拓扑序列字典序最小,可以直接用优先队列维护。
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<functional>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn=1e5+10;
const int mod=1e9+7;
int T,n,m,k,cnt[maxn],x,y,vis[maxn];
vector<int> t[maxn];

int main()
{
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d%d%d",&n,&m,&k);
		for (int i=1;i<=n;i++) t[i].clear(),cnt[i]=vis[i]=0;
		while (m--)
		{
			scanf("%d%d",&x,&y);
			t[x].push_back(y);
			cnt[y]++;
		}
		priority_queue<int,vector<int>,greater<int> > p;
		for (int i=1;i<=n;i++) if (cnt[i]<=k) p.push(i),vis[i]=1;
		int res=0,i=1;
		while (!p.empty())
		{
			int q=p.top();	p.pop();
			if (cnt[q]>k) {vis[q]=0; continue;}
			(res+=(LL)q*i++%mod)%=mod;
			k-=cnt[q];
			for (int i=0;i<t[q].size();i++)
			{
				cnt[t[q][i]]--;
				if (!vis[t[q][i]]&&cnt[t[q][i]]<=k)
				{
					p.push(t[q][i]);
					vis[t[q][i]]=1;
				}
			}
		}
		printf("%d\n",res);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值