HDU 5399 Too Simple

本文详细探讨了在已知部分函数定义的情况下,如何通过逻辑推理确定剩余未知函数,以确保整个函数序列满足特定条件。通过实例分析,展示了计算不同函数序列的数量的方法,以及在面对多个未知函数时的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

Teacher Mai has m functions f1,f2,,fm:{1,2,,n}{1,2,,n}(that means for all x{1,2,,n},f(x){1,2,,n}). But Rhason only knows some of these functions, and others are unknown.

She wants to know how many different function series f1,f2,,fm there are that for every i(1in),f1(f2(fm(i)))=i. Two function series f1,f2,,fm and g1,g2,,gm are considered different if and only if there exist i(1im),j(1jn),fi(j)gi(j).
 

Input
For each test case, the first lines contains two numbers n,m(1n,m100).

The following are m lines. In i-th line, there is one number 1 or n space-separated numbers.

If there is only one number 1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j).
 

Output
For each test case print the answer modulo 109+7.
 

Sample Input
3 3 1 2 3 -1 3 2 1
 

Sample Output
1
Hint
The order in the function series is determined. What she can do is to assign the values to the unknown functions.

这题其实很简单,对于多于两个-1的情况不管之前那个怎么选,只要最后一个固定就可以保证,所以答案就是(n!)^(m-1) m是-1的个数

不过此题坑比较多,要注意判断

#pragma comment(linker, "/STACK:1024000000,1024000000") 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<cstring>
#include<algorithm>
#include<functional>
using namespace std;
typedef long long LL;
const LL base = 1e9 + 7;
const int maxn = 105;
LL T, n, m, f[maxn], a[maxn][maxn];

inline void read(int &x)
{
    char ch;
    while ((ch = getchar())<'0' || ch>'9');
    x = ch - '0';
    while ((ch = getchar()) >= '0' && ch <= '9') x = x * 10 + ch - '0';
}

int main()
{
    //read(T);
    for (int i = f[0] = 1; i <= 100; i++) f[i] = f[i - 1] * i % base;
    while (scanf("%I64d%I64d", &n, &m) != EOF)
    {
        LL tot = 0, ans = 1;
        for (int i = 1; i <= m; i++)
        {
            scanf("%I64d", &a[i][1]);
            if (a[i][1] == -1) tot++;
            else for (int j = 2; j <= n; j++)
            {
                scanf("%I64d", &a[i][j]);
                for (int k = j - 1; k; k--) if (a[i][j] == a[i][k]) ans = 0;
            }
        }
        for (int i = 1; i < tot; i++) ans = ans * f[n] % base;
        if (tot == 0)
        {
            for (int i = 1; i <= n; i++) a[0][i] = i;
            for (int i = m; i; i--)
                for (int j = 1; j <= n; j++) a[0][j] = a[i][a[0][j]];
            for (int i = 1; i <= n; i++) if (a[0][i] != i) ans = 0;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值