UVA 348 Optimal Array Multiplication Sequence

本文探讨了矩阵乘法的计算顺序对所需乘法次数的影响,并提供了一个算法来确定最优的计算顺序,通过动态规划方法减少计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given two arrays A and B, we can determine the array C = AB using the standard definition of matrix multiplication:

The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) andcolumns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(A)columns(Bcolumns(A). For example, if A is a tex2html_wrap_inline67 array, and B is a tex2html_wrap_inline71 array, it will take tex2html_wrap_inline73 , or 3000 multiplications to compute the C array.

To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if XY, and Z are arrays, then to compute XYZ we could either compute (XYZ or X (YZ). Suppose X is a tex2html_wrap_inline103 array, Y is a tex2html_wrap_inline67 array, and Z is a tex2html_wrap_inline111 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

(XYZ

  • tex2html_wrap_inline119 multiplications to determine the product (X Y), a tex2html_wrap_inline123 array.
  • Then tex2html_wrap_inline125 multiplications to determine the final result.
  • Total multiplications: 4500.

X (YZ)

  • tex2html_wrap_inline133 multiplications to determine the product (YZ), a tex2html_wrap_inline139 array.
  • Then tex2html_wrap_inline141 multiplications to determine the final result.
  • Total multiplications: 8750.

Clearly we'll be able to compute (XYZ using fewer individual multiplications.

Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplications required.

Input

For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.

Output

Assume the arrays are named tex2html_wrap_inline157 . Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.

Sample Input

3
1 5
5 20
20 1
3
5 10
10 20
20 35
6
30 35
35 15
15 5
5 10
10 20
20 25
0

Sample Output

Case 1: (A1 x (A2 x A3))
Case 2: ((A1 x A2) x A3)

Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

其实就是区间dp,搞清楚转移方程即可,同时记录一下路径的情况。

#include<iostream>  
#include<algorithm>
#include<math.h>
#include<string.h>
#include<cstdio>
#include<string>
using namespace std;
const int maxn = 20;
int u, n, i, j, k, a[maxn][2], f[maxn][maxn], m[maxn][maxn], b[maxn][2];

void ss(int q, int h)
{
	if (q>=h) return;
	b[q][0]++;	b[h][1]++;
	if (q > m[q][h] || m[q][h] > h) return;
	ss(q, m[q][h]);		ss(m[q][h] + 1, h);
}

int main()
{
	int tot = 0;
	while (~scanf("%d", &n), n)
	{
		for (i = 0; i < n; i++) cin >> a[i][0] >> a[i][1];
		for (i = 0; i < n; i++) 
		{ 
			f[i][i] = 0; f[i][i + 1] = a[i][0] * a[i][1] * a[i + 1][1]; 
			b[i][0] = 0; b[i][1] = 0;
		}
		for (i = 2; i < n; i++)
			for (j = 0; j + i < n; j++)
			{
				f[j][j + i] = 1 << 30;
				for (k = 0; k < i; k++)
				if (f[j][j + i]>f[j][j + k] + f[j + k + 1][j + i] + a[j][0] * a[j + i][1] * a[j + k][1])
				{
					f[j][j + i] = f[j][j + k] + f[j + k + 1][j + i] + a[j][0] * a[j + i][1] * a[j + k][1];
					m[j][j + i] = j + k;
				}
			}
		ss(0, n - 1);
		cout << "Case " << ++tot << ": ";
		for (i = 0; i < n; i++)
		{
			while (b[i][0]--) printf("(");
			printf("A%d", i + 1);
			while (b[i][1]--) printf(")");
			if (i < n - 1) printf(" x "); else printf("\n");
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值