工具集小记

本文探讨了ELK(Elasticsearch、Logstash、Kibana)在日志管理和分析中的应用,以及消息队列如RabbitMQ、Kafka在不同场景下的优势。对比了RabbitMQ和Kafka在消息传递、持久性、吞吐量和流处理等方面的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ELK(Elasticsearch、Logstash、Kibana)

Elasticsearch分布式搜索、

Logstash日志过滤

Kibana ELK图形化日志分析界面

消息队列 MQ,消息队列本质上拥有一定的缓存,屏蔽环境差异,中心化管理的功能,因此redis在一定程度上也有MQ的特质

https://blog.youkuaiyun.com/vtopqx/article/details/76382934

https://blog.youkuaiyun.com/linsongbin1/article/details/47781187

KafKa、RabbitMQ、ZeroMq、ActiveMQ

RabbitMQ is designed as a general purpose message broker, employing several variations of point to point, request/reply and pub-sub communication styles patterns.

Apache Kafka is designed for high volume publish-subscribe messages and streams, meant to be durable, fast, and scalable. 

 

Let’s examine some scenarios best for RabbitMQ, like:

  • Your application needs to work with any combination of existing protocols like AMQP 0-9-1, STOMP, MQTT, AMQP 1.0.
  • You need a finer-grained consistency control/guarantees on a per-message basis (dead letter queues, etc.) However, Kafka has recently added better support for transactions
  • Your application needs variety in point to point, request / reply, and publish/subscribe messaging
  • Complex routing to consumers, integrate multiple services/apps with non-trivial routing logic
  •  

So let’s unpack that a bit and get some clarity on which messaging scenarios are best for Kafka for, like:

  • Stream from A to B without complex routing, with maximal throughput (100k/sec+), delivered in partitioned order at least once.
  • When your application needs access to stream history, delivered in partitioned order at least once.  Kafka is a durable message store and clients can get a “replay” of the event stream on demand, as opposed to more traditional message brokers where once a message has been delivered, it is removed from the queue.
  • Stream Processing
  • Event Sourcing

 

Nacos

coreDNS

k8s

spring-cloud-ali

golang caddy(http)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值