Manacher's algorithm for finding longest palindromic substring

Given a string S, find the longest palindromic substring in S.

An O(N) Solution (Manacher’s Algorithm):
First, we transform the input string, S, to another string T by inserting a special character ‘#’ in between letters. The reason for doing so will be immediately clear to you soon.

For example: S = “abaaba”, T = “#a#b#a#a#b#a#”.

To find the longest palindromic substring, we need to expand around each Ti such that Ti-d … Ti+d forms a palindrome. You should immediately see that d is the length of the palindrome itself centered at Ti.

We store intermediate result in an array P, where P[ i ] equals to the length of the palindrome centers at Ti. The longest palindromic substring would then be the maximum element in P.

Using the above example, we populate P as below (from left to right):

T = # a # b # a # a # b # a #
P = 0 1 0 3 0 1 6 1 0 3 0 1 0

Looking at P, we immediately see that the longest palindrome is “abaaba”, as indicated by P6 = 6.

Did you notice by inserting special characters (#) in between letters, both palindromes of odd and even lengths are handled graciously? (Please note: This is to demonstrate the idea more easily and is not necessarily needed to code the algorithm.)

Now, imagine that you draw an imaginary vertical line at the center of the palindrome “abaaba”. Did you notice the numbers in P are symmetric around this center? That’s not only it, try another palindrome “aba”, the numbers also reflect similar symmetric property. Is this a coincidence? The answer is yes and no. This is only true subjected to a condition, but anyway, we have great progress, since we can eliminate recomputing part of P[ i ]‘s.

Let us move on to a slightly more sophisticated example with more some overlapping palindromes, where S = “babcbabcbaccba”.


Above image shows T transformed from S = “babcbabcbaccba”. Assumed that you reached a state where table P is partially completed. The solid vertical line indicates the center (C) of the palindrome “abcbabcba”. The two dotted vertical line indicate its left (L) and right (R) edges respectively. You are at index i and its mirrored index around C is i’. How would you calculate P[ i ] efficiently?

Assume that we have arrived at index i = 13, and we need to calculate P[ 13 ] (indicated by the question mark ?). We first look at its mirrored index i’ around the palindrome’s center C, which is index i’ = 9.


The two green solid lines above indicate the covered region by the two palindromes centered at i and i’. We look at the mirrored index of i around C, which is index i’. P[ i' ] = P[ 9 ] = 1. It is clear that P[ i ] must also be 1, due to the symmetric property of a palindrome around its center.

As you can see above, it is very obvious that P[ i ] = P[ i' ] = 1, which must be true due to the symmetric property around a palindrome’s center. In fact, all three elements after C follow the symmetric property (that is, P[ 12 ] = P[ 10 ] = 0, P[ 13 ] = P[ 9 ] = 1, P[ 14 ] = P[ 8 ] = 0).


Now we are at index i = 15, and its mirrored index around C is i’ = 7. Is P[ 15 ] = P[ 7 ] = 7?

Now we are at index i = 15. What’s the value of  P[ i ] ? If we follow the symmetric property, the value of  P[ i ] should be the same as P[ i' ] = 7. But this is wrong. If we expand around the center at T15, it forms the palindrome “a#b#c#b#a”, which is actually shorter than what is indicated by its symmetric counterpart. Why?


Colored lines are overlaid around the center at index i and i’. Solid green lines show the region that must match for both sides due to symmetric property around C. Solid red lines show the region that might not match for both sides. Dotted green lines show the region that crosses over the center.

It is clear that the two substrings in the region indicated by the two solid green lines must match exactly. Areas across the center (indicated by dotted green lines) must also be symmetric. Notice carefully that P[ i ' ] is 7 and it expands all the way across the left edge (L) of the palindrome (indicated by the solid red lines), which does not fall under the symmetric property of the palindrome anymore. All we know is  P[ i ]  ≥ 5, and to find the real value of P[ i ] we have to do character matching by expanding past the right edge (R). In this case, since P[ 21 ] ≠ P[ 1 ], we conclude that P[ i ] = 5.

Let’s summarize the key part of this algorithm as below:

if P[ i' ] ≤ R – i,
then P[ i ] ← P[ i' ]
else P[ i ] ≥ R  i. (Which we have to expand past the right edge (R) to find P[ i ].

See how elegant it is? If you are able to grasp the above summary fully, you already obtained the essence of this algorithm, which is also the hardest part.

The final part is to determine when should we move the position of C together with R to the right, which is easy:

If the palindrome centered at i does expand past R, we update C to i, (the center of this new palindrome), and extend R to the new palindrome’s right edge.

In each step, there are two possibilities. If P[ i ] ≤ R – i, we set P[ i ] to P[ i' ] which takes exactly one step. Otherwise we attempt to change the palindrome’s center to i by expanding it starting at the right edge, R. Extending R (the inner while loop) takes at most a total of N steps, and positioning and testing each centers take a total of N steps too. Therefore, this algorithm guarantees to finish in at most 2*N steps, giving a linear time solution.

from http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html


内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值