Identifying Manipulated Images

文章摘自:http://www.technologyreview.com/Infotech/20423/?a=f

Photo-editing software gets more sophisticated all the time, allowing users to alter pictures in ways both fun and fraudulent. Last month, for example, a photo of Tibetan antelope roaming alongside a high-speed train was revealed to be a fake, according to the Wall Street Journal, after having been published by China's state-run news agency. Researchers are working on a variety of digital forensics tools, including those that analyze the lighting in an image, in hopes of making it easier to catch such manipulations.

Tools that analyze lighting are particularly useful because "lighting is hard to fake" without leaving a trace, says Micah Kimo Johnson, a researcher in the brain- and cognitive-sciences department at MIT, whose work includes designing tools for digital forensics. As a result, even frauds that look good to the naked eye are likely to contain inconsistencies that can be picked up by software.

Many fraudulent images are created by combining parts of two or more photographs into a single image. When the parts are combined, the combination can sometimes be spotted by variations in the lighting conditions within the image. An observant person might notice such variations, Johnson says; however, "people are pretty insensitive to lighting." Software tools are useful, he says, because they can help quantify lighting irregularities--they can give solid information during evaluations of images submitted as evidence in court, for example--and because they can analyze more complicated lighting conditions than the human eye can. Johnson notes that in many indoor environments, there are dozens of light sources, including lightbulbs and windows. Each light source contributes to the complexity of the overall lighting in the image.

Johnson's tool, which requires an expert user, works by modeling the lighting in the image based on clues garnered from various surfaces within the image. (It works best for images that contain surfaces of a fairly uniform color.) The user indicates the surface he wants to consider, and the program returns a set of coefficients to a complex equation that represents the surrounding lighting environment as a whole. That set of numbers can then be compared with results from other surfaces in the image. If the results fall outside a certain variance, the user can flag the image as possibly manipulated.

Hany Farid, a professor of computer science at Dartmouth College, who collaborated with Johnson in designing the tool and is a leader in the field of digital forensics, says that "for tampering, there's no silver button." Different manipulations will be spotted by different tools, he points out. As a result, Farid says, there's a need for a variety of tools that can help experts detect manipulated images and can give a solid rationale for why those images have been flagged.

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值