Balanced Lineup_poj3264_rmq ST

本文介绍了一种使用ST算法来确定特定范围内最高与最矮个体之间高度差异的方法。该算法通过预处理数据,实现了快速查询任意指定范围内最大值与最小值的功能,适用于如农场游戏中挑选合适范围内的奶牛进行游戏等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description


For the daily milking, Farmer John’s N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input


Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output


Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Analysis


强行ST然而这是线段树例题(/ □ )
ST算法的核心:
f[i][j]表示从i往后2j个(i是第一个)数字区间的最大/最小值
我都想得出来的递推式

f[i][j]=max(f[i][j1],f[i+2j1][j1])

那么区间ij的最大值为

max(f[i][i+logji+12],f[j2logji+12+1][j])

Code


#include <stdio.h>
#include <math.h>
using namespace std;
int t[50001],maxF[50001][16],minF[50001][16];
int max(int x,int y)
{
    return x>y?x:y;
}
int min(int x,int y)
{
    return x<y?x:y;
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
    {
        scanf("%d",&t[i]);
        maxF[i][0]=minF[i][0]=t[i];
    }
    for (int j=1;j<=15;j++)
        for (int i=1;i<=n&&i+(1<<j)-1<=n;i++)
        {
            maxF[i][j]=max(maxF[i][j-1],maxF[i+(1<<(j-1))][j-1]);
            minF[i][j]=min(minF[i][j-1],minF[i+(1<<(j-1))][j-1]);
        }
    for (int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        int v=floor(log10(y-x+1)/log10(2));
        int mx=max(maxF[x][v],maxF[y-(1<<v)+1][v]);
        int mn=min(minF[x][v],minF[y-(1<<v)+1][v]);
        printf("%d\n",mx-mn);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值