tensorflow 遇到的坑之 autograph

本文探讨了从TensorFlow 2.0开始引入的Autograph特性,特别是使用tf.function装饰器来自动转换Python函数为计算图的过程。文章记录了在实际应用中遇到的一些常见问题及其解决方案,例如如何避免Graph tensors泄漏等问题。
部署运行你感兴趣的模型镜像

记录tensorflow中有关autograph的坑

tensorflow 2.0 之前使用session构建计算图,构建过程非常复杂,把 python 变得和 C++ 一样复杂。

tensorflow 2.0 之后引入autograph,只需要在函数声明前加上 tf.function,就可以将我们的函数自动转为计算图。看起来比 session 要更接近 python,但转计算图过程中的错误非常难定位找到原因。

但是不使用计算图,直接运行 python 代码,效率极低。我尝试将 tensorflow 2.0 之前的代码转为 tensorflow2.0之后的版本,起初只是把 session构建的计算图转为了简单的python函数,效率低了十几倍。

下面记录一下,我使用 autograph 遇到的坑。

问题 1

An op outside of the function building code is being passed a “Graph” tensor. It is possible to have Graph tensors leak out of the function building context by including a tf.init_scope in your function building code.

  • 发生场景:定义类函数为 autograph,autograph 中使用了类成员,其类型为 python 的 list,并且在 autograph 中该成员被重复赋值。
  • 解决办法:使用局部变量的 python list。
  • 为什么:autograph 中也有重复赋值的其他类成员,但都是 tensorflow的tensor类型。

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

2025-03-14 16:03:26.155367: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. Traceback (most recent call last): File "E:\learn\Objectjiance\00.py", line 1, in <module> import tensorflow as tf File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\__init__.py", line 49, in <module> from tensorflow._api.v2 import __internal__ File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\_api\v2\__internal__\__init__.py", line 8, in <module> from tensorflow._api.v2.__internal__ import autograph File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\_api\v2\__internal__\autograph\__init__.py", line 9, in <module> from tensorflow.python.autograph.impl.api import tf_convert # line: 493 File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\autograph\impl\api.py", line 25, in <module> from tensorflow.python.autograph import operators File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\autograph\operators\__init__.py", line 36, in <module> from tensorflow.python.autograph.operators.conditional_expressions import if_exp File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\autograph\operators\conditional_expressions.py", line 18, in <module> from tensorflow.python.autograph.operators import control_flow File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\autograph\operators\control_flow.py", line 64, in <module> from tensorflow.python.autograph.operators import py_builtins File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\autograph\operators\py_builtins.py", line 29, in <module> from tensorflow.python.ops import cond File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\ops\cond.py", line 25, in <module> from tensorflow.python.ops import cond_v2 File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\ops\cond_v2.py", line 42, in <module> from tensorflow.python.ops import control_flow_util_v2 as util File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\ops\control_flow_util_v2.py", line 20, in <module> from tensorflow.python.eager.polymorphic_function import atomic_function File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\eager\polymorphic_function\atomic_function.py", line 30, in <module> from tensorflow.python.eager.polymorphic_function import function_type_utils File "D:\ProgramData\anaconda3\envs\my_env\lib\site-packages\tensorflow\python\eager\polymorphic_function\function_type_utils.py", line 21, in <module> import six ModuleNotFoundError: No module named 'six'
03-15
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值