Enterprise JavaBeans v3.0 - 1.1. Server-Side Components

本文探讨了服务器端组件在分布式业务系统中的作用及其灵活性、可扩展性和复用性。重点介绍了EJB作为标准服务器端组件模型的特点,包括其如何支持分布式业务应用程序的开发和部署。
1.1. Server-Side Components

Object-oriented languages such as Java, C++, C#, Python, and Ruby are used to write software that is flexible, extensible, and reusablethe three axioms(n.[数]公理) of object-oriented development. In business systems, object-oriented languages are used to improve development of GUIs, to simplify access to data, and to encapsulate the business logic. The encapsulation of business logic into business objects is a fairly recent focus in the information-technology industry. Business is fluid, which means that a business's products, processes, and objectives evolve(v.(使)发展, (使)进展, (使)进化) over time. If the software that models the business can be encapsulated into business objects, it becomes flexible, extensible, and reusable, and therefore evolves as the business evolves.

A server-side component model may define an architecture for developing distributed business objects that combines the accessibility of distributed object systems with the fluidity of objectified business logic. Server-side component models are used on middle-tier application servers, which manage the components at runtime and make them available to remote clients. They provide a baseline of functionality that makes it easy to develop distributed business objects and assemble them into business solutions.

Server-side components can also be used to model other aspects of a business system, such as presentation and routing. A Java servlet, for example, is a server-side component that generates HTML and XML data for the presentation layer of a web application (Struts and JSF components are also examples of this type of server-side component). EJB message-driven beans, discussed later in this book, are server-side components that can be used to consume and process asynchronous messages.

Server-side components, like other components, can be bought and sold as independent pieces of executable software. They conform to a standard component model and can be executed without direct modification in a server that supports that component model. Server-side component models often support attribute-based programming, which allows the runtime behavior of the component to be modified when it is deployed, without having to change the programming code in the component. Depending on the component model, the server administrator can declare a server-side component's transactional, security, and even persistence behavior by setting these attributes to specific values.

As an organization's services, products, and operating procedures evolve, server-side components can be reassembled, modified, and extended so that the business system reflects those changes. Imagine a business system as a collection of server-side components that model concepts such as customers, products, reservations, and warehouses. Each component is like a Lego™ block that can be combined with other components to build a business solution. Products can be stored in the warehouse or delivered to a customer; a customer can make a reservation or purchase a product. You can assemble components, take them apart, use them in different combinations, and change their definitions. A business system based on server-side components is fluid because it is objectified, and it is accessible because the components can be distributed.

服务器端组件的初衷:独立的功能封装,可组装、可配置 

1.1.1. Enterprise JavaBeans Defined 

Sun Microsystems' definition of the Enterprise JavaBeans architecture is as follows: The Enterprise JavaBeans architecture is a component architecture for the development and deployment of component-based distributed business applications. Applications written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-user secure. These applications may be written once, and then deployed on any server platform that supports the Enterprise JavaBeans specification.[*]

[*] Sun Microsystems' Enterprise JavaBeans Specification, v3.0, Copyright© 2002 by Sun Microsystems, Inc.

That's a mouthful, but it's not atypical of how Sun defines many of its Java technologieshave you ever read the definition of the Java language itself? It's about twice as long. This book offers a shorter definition of EJB:

         Enterprise JavaBeans is a standard server-side component model for distributed business applications.

This means the EJB specification offers a standard model for building server-side components that represent business processes (purchasing, inventory, and so on). Once you have built a set of components that fit the requirements of your business, you can combine them to create business applications. On top of that, as "distributed" components, they don't all have to reside on the same server. Components can reside(vi.居住) wherever it's most convenient: a TravelAgent component can "live" near the reservation database, or a Purchase business-process component can live near the user interface. You can do whatever's necessary to minimize latency, share the processing load, or maximize reliability.

       EJB是一种满足分布式商业应用的标准服务器端组件。分布式是其重要特点,可灵活部署。

 

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值