codeforces 897 D Ithea Plays With Chtholly(交互)

本文介绍了一种优化数组填充过程的方法,旨在减少填充操作的时间复杂度。通过将输入数值分配到数组两端的方式,避免了传统从一端开始遍历的效率瓶颈,尤其是在数值范围较大时效果更为显著。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:

每次给你一个数,让你放到一个长度为n 的数组里,直到这个数组填满并且是不递减函数为止。需要 在m步内完成

c是给出的数的范围。

 

解题思路:

一种显然的暴力方法就是从1开始扫描,遇到第一个大于x的或是a[i]==0的就放。

但是还有显然的卡掉这种暴力的做法,就是把数n-1逐个给出,就每次要替换,这样的话就需要n^2次,显然不行。

所以应该能想到从两边,开始扫描,让大于c/2的从n开始往下扫描,这样刚刚那组数据就可以过了,复杂度正好是n*c/2。

赛时想到往两边放了,但是产生了需要开两个数组的错觉,然后无法合并两个数组,就开始乱搞了。。其实放一个数组里两种不同方法就能搞定,这需要抽象一下。。。

 

代码:

 

#include <bits/stdc++.h>
using namespace std;
int n;
int a[1005];
int judge()
{
    for(int i=1; i<=n; i++)
    {
        if(a[i]==0)return 0;
        if(i<n && a[i]>a[i+1])return 0;
    }
    return 1;
}
int main()
{
    int m, i, j, c;
    cin>>n>>m>>c;
    for(i=1; i<=m; i++)
    {
        int x;
        scanf("%d", &x);
        if(x<=c/2)
        {
            for(int i=1; i<=n; i++)
            {
                if(a[i]==0 || a[i]>x)
                {
                    a[i]=x;
                    cout<<i<<endl;
                    break;
                }
            }
        }
        else 
        {
            for(int i=n; i>=1; i--)
            {
                if(a[i]==0 || a[i]<x)
                {
                    a[i]=x;
                    cout<<i<<endl;
                    break;
                }
            }
        }
        if(judge())return 0;
    }
    return 0;
}

 

 

 

 

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值