机器学习入门必读书籍——李航《统计学习方法》(文尾免费领取)

《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。


这是作者的内容简介,看完本书(最后两章跟自己的关系不大,没有看)最大的感受就是书确实跟内容简介相吻合。本书最大的特色:
(1)理论浅显易懂。读的时候可以看出作者功力非常深厚,跟那些平凑的或者生涩翻译的完全不一样。有人评价说作者可能英文演讲或者写作用惯,有些地方中文不知道怎么写。我也有这样的感受,有些地方确实有些晦涩,但这种晦涩跟那种不懂而直译的晦涩是完全不一样的,不影响阅读。
(2)作者把复杂的推导单独拧出来,侧重在介绍每种算法的思想以及如何使用。
(3)每一章基本都有很容易懂的例子,告诉读者如何使用刚介绍的算法。
(4)每章最后的推荐阅读材料也很不错。

我虽然很喜欢模式识别和机器学习,但我暂时并不希望在这上面做深入的研究,只想把别人研究好的成熟的理论用在计算机视觉任务上。比如SVM,Adaboost,EM,朴素贝叶斯,K近邻,决策树等等。能够知道每种算法的原理,而并不想深究其实现过程以及理论证明。比如SVM,我想知道的是这种算法如何实现分类,有哪几种类型,每种适合什么样的分类任务,对应的参数的意义是什么。这样我在使用SVM-Light或者libsvm的时候就知道该怎么选用参数,怎么使用学习到的系数。从这个角度看这本书很适合我。当然也适合那些在想在机器学习方面做

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值