Tree
Description
给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K
Input
N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k
Output
一行,有多少对点之间的距离小于等于k
Sample Input
7
1 6 13
6 3 9
3 5 7
4 1 3
2 4 20
4 7 2
10
Sample Output
5
Source
LTC男人八题系列(POJ1741)
TMD为什么八中能A,POJ就是T!T!T!
Solution
点分治 对于一条树路径 只有经过或不经过一个点的情况
对于不经过的情况 把一棵树按这个点拆成好几棵分治就行了
考虑经过这个点的情况
对于这题 可以对这个点延伸出的几棵子树各做一次dfs
记录子树中出现的距离值
对于一棵树的距离值数组
把它排序求一次ans1
再对每棵子树分别求一个自己对自己的ans2
ans1-Σans2即为最后的ans
Code
/**************************************************************
Problem: 1468
User: johann
Language: C++
Result: Accepted
Time:876 ms
Memory:4284 kb
****************************************************************/
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define red(i, a, b) for(int i = (a); i >= (b); i--)
#define ll long long
inline int read() {
int x = 0; char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); }
return x;
}
const int N = 55000;
const int inf = 1000000000;
struct edge{
int from, to, len, nxt;
}e[N * 2];
int depth[N], head[N], size[N], mx[N], d[N], vis[N];
int n, m, k, tail = 0, sum, ans, root;
void addedge(int x, int y, int z) {
e[++tail].from = x;
e[tail].to = y;
e[tail].len = z;
e[tail].nxt = head[x];
head[x] = tail;
}
void getroot(int u, int fa) {
size[u] = 1; mx[u] = 0;
for(int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v == fa || vis[v]) continue;
getroot(v, u);
size[u] += size[v];
mx[u] = max(mx[u], size[v]);
}
mx[u] = max(mx[u], sum - size[u]);
if (mx[u] < mx[root]) root = u;
}
void getdep(int u, int fa) {
depth[++m] = d[u];
for(int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (v == fa || vis[v]) continue;
d[v] = d[u] + e[i].len;
getdep(v, u);
}
}
int calc(int u, int len) {
d[u] = len; m = 0;
getdep(u, 0);
sort(depth + 1, depth + m + 1);
int ret = 0, l, r;
for(l = 1, r = m; l < r;) {
if (depth[l] + depth[r] <= k) {
ret += r - l;
l++;
}else r--;
}
return ret;
}
void work(int u) {
ans += calc(u, 0);
vis[u] = 1;
for(int i = head[u]; i != -1; i = e[i].nxt) {
int v = e[i].to;
if (vis[v]) continue;
ans -= calc(v, e[i].len);
sum = size[v];
root = 0;
getroot(v, 0);
work(v);
}
}
int main() {
n = read();
tail = root = 0; ans = 0;
memset(vis, 0, sizeof(vis));
rep(i, 1, n) head[i] = -1;
rep(i, 1, n - 1) {
int x = read(), y = read(), z = read();
addedge(x, y, z);
addedge(y, x, z);
}
k = read();
sum = n;
mx[0] = inf;
getroot(1, 0);
work(root);
printf("%d\n", ans);
return 0;
}