【动态规划】字符串编辑距离(Levenshtein距离)算法

基本介绍

Levenshtein距离是一种计算两个字符串间的差异程度的字符串度量(string metric)。我们可以认为Levenshtein距离就是从一个字符串修改到另一个字符串时,其中编辑单个字符(比如修改、插入、删除)所需要的最少次数。俄罗斯科学家Vladimir Levenshtein于1965年提出了这一概念。

简单例子

从字符串“kitten”修改为字符串“sitting”只需3次单字符编辑操作,如下:

  • sitten ( k -> s )
  • sittin ( e -> i )
  • sitting ( _ -> g )

因此“kitten”和“sitting”的Levenshtein距离为3。

实现思想

  如何编程实现这一算法呢?许多人试图用矩阵来解释,但实际上矩阵是最终可视化的工具,配合理解“为什么”比较方便,但从矩阵却比较难想到“怎么做”。

  我们试图找到“从字符串A修改到字符串B”这一问题的子解结构。当然反过来说“从字符串B修改到字符串A”和它是同一个问题,因为从A中删掉一个字符来匹配B,就相当于在B中插入一个字符来匹配A,这两个操作是可以互相转化的。

  假设字符序列A[1…i]、B[1…j]分别是字符串A、B的前i、j个字符构成的子串,我们得到一个子问题是“从字符串A[1…i]修改到字符串B[1…j]”:
这里写图片描述

① 插入操作:

当将]A[1…i]修改成B[1…j−

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值