机器学习方面的一些大牛小牛

本文汇总了众多在人工智能领域内的知名专家及其主页链接,并整理了一系列重要的研究资源和工具,涉及机器学习、数据挖掘等多个方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Michael I. Jordan


Lexing Xie at ANU Christopher M. Bishop Home - Andrew Ng Xiaoli Li's Home Page Dong Xu Rutgers: Data Mining: Professor Hui Xiong James Allan Hsuan-Tien Lin > Home Jun Zhu's Homepage Xin Yao's Home Page Qi He - IBM Research www.cs.princeton.edu/~blei/ Peter Bartlett's Home Page Mark Steyvers Charles X. Ling's Home Page Dr. Jian Pei @ Simon Fraser University Networks, Crowds, and Markets A Book by David Easley and Jon Kleinberg Repository for Epitope Datasets (RED) The `Bow' Toolkit Xiaohua Tony Hu's Home Page AIIA - Artificial Intelligence & Information Analysis Laboratory Philipps-Universität Marburg - Knowledge Engineering & Bioinformatics : Prof. Dr. Eyke Hüllermeier Giancarlo Ruffo - Dipartimento di Informatica - Università di Torino home [Irwin King @ Web Intelligence & Social Computing Lab] Project: Large-Scale Multi-label Learning ::: NeuralWare | About Us ::: Rong Jin's MSU homepage CODE - IIT Jiawei Han Data Mining Research Group @ U of Illinois Longbing CAO's Homepage http://www.agentmining.org/ Welcome to Domain Driven Data Mining http://www.behaviorinformatics.org/ Welcome to EDM - UTS Focus Group http://www.marketsurveillance.org/ Welcome to Social Security Data Mining Data Warehousing at Stanford Jun Yang: Home Home, WAMDM, Database Group at Renmin University of China 薛贵荣 - Apex Data & Knowledge Management Lab Haifeng Wang (王海峰) BCMI Qiang Yang qyang Tie-Yan Liu - Microsoft Research Hang Li - Microsoft Research Deng Cai 德荣刘 hunch.net/~active_learning/ Ming Yang www.public.asu.edu/~kkahol/index.html Shuiwang Ji | Home Introduction to Machine Learning Huidong Health Informatics Lab @ SIAT (Fengfeng Zhou) Ubiquitous Data Mining Sheng-Wei Chen (a.k.a. Kuan-Ta Chen) Yun (Raymond) Fu ' Webpage Opinion Mining, Sentiment Analysis, Opinion Extraction

浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值