Java常用排序算法/程序员必须掌握的8大排序算法

本文详细介绍了八种经典的排序算法,包括直接插入排序、希尔排序、简单选择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。每种算法都配有基本思想介绍、实例演示及Java代码实现。
原文请参考:

分类:

1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)

所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序

不稳定:快速排序,希尔排序,堆排序。

先来看看8种排序之间的关系:


1.直接插入排序

(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排

好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

也是排好顺序的。如此反复循环,直到全部排好顺序。

(2)实例

(3)用java实现

package com.njue; 

public class insertSort { 
    public insertSort(){ 
        int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 
        int temp=0; 

        for(int i=1;i<a.length;i++){ 
            int j=i-1; 
            temp=a[i];
            for(;j>=0&&temp<a[j];j--){ 
                a[j+1]=a[j]; //将大于temp的值整体后移一个单位 
            } 
            a[j+1]=temp; 
        } 

        for(int i=0;i<a.length;i++){ 
            System.out.println(a[i]); 
        }
    } 
}

2. 希尔排序(最小增量排序)

(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

(2)实例:

(3)用java实现

publicclass shellSort {

publicshellSort(){

int a[]={ 1 , 54 , 6 , 3 , 78 , 34 , 12 , 45 , 56 , 100 };
double d1=a.length;
int temp= 0 ;

while ( true ){
d1= Math.ceil(d1/ 2 );
int d=( int ) d1;
for ( int x= 0 ;x<d;x++){

for ( int i=x+d;i<a.length;i+=d){
int j=i-d;
temp=a[i];
for (;j>= 0 &&temp<a[j];j-=d){
a[j+d]=a[j];
}
a[j+d]=temp;
}
}

if (d== 1 ){
break ;
}

for ( int i= 0 ;i<a.length;i++){
System.out.println(a[i]);
}
}


3.简单选择排序

(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

(2)实例:

(3)用java实现


public class selectSort {

public selectSort(){
int a[]={ 1 , 54 , 6 , 3 , 78 , 34 , 12 , 45 };
int position= 0 ;
for ( int i= 0 ;i<a.length;i++){
int j=i+ 1 ;
position=i;
int temp=a[i];
for (;j<a.length;j++){
if (a[j]<temp){
temp=a[j];
position=j;
}
}
a[position]=a[i];
a[i]=temp;
}

for ( int i= 0 ;i<a.length;i++)
System.out.println(a[i]);
}
}


4.堆排序

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

(2)实例:

初始序列:46,79,56,38,40,84

建堆:

交换,从堆中踢出最大数

剩余结点再建堆,再交换踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

(3)用java实现



import java.util.Arrays;

publicclass HeapSort {
inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };
public HeapSort(){
heapSort(a);
}

public void heapSort( int [] a){
System.out.println( "开始排序" );
int arrayLength=a.length;
//循环建堆
for ( int i= 0 ;i<arrayLength- 1 ;i++){
//建堆
buildMaxHeap(a,arrayLength- 1 -i);
//交换堆顶和最后一个元素
swap(a, 0 ,arrayLength- 1 -i);
System.out.println(Arrays.toString(a));
}
}

private void swap( int [] data, int i, int j) {
// TODO Auto-generated method stub
int tmp=data[i];
data[i]=data[j];
data[j]=tmp;
}

//对data数组从0到lastIndex建大顶堆
privatevoid buildMaxHeap( int [] data, int lastIndex) {
// TODO Auto-generated method stub
//从lastIndex处节点(最后一个节点)的父节点开始

for ( int i=(lastIndex- 1 )/ 2 ;i>= 0 ;i--){
//k保存正在判断的节点
int k=i;
//如果当前k节点的子节点存在
while (k* 2 + 1 <=lastIndex){
//k节点的左子节点的索引
int biggerIndex= 2 *k+ 1 ;
//如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
if (biggerIndex<lastIndex){
//若果右子节点的值较大
if (data[biggerIndex]<data[biggerIndex+ 1 ]){
//biggerIndex总是记录较大子节点的索引
biggerIndex++;
}
}

//如果k节点的值小于其较大的子节点的值
if (data[k]<data[biggerIndex]){
//交换他们
swap(data,k,biggerIndex);
//将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
k=biggerIndex;
} else {
break ;
}
}
}
}
}



5.冒泡排序

(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

(2)实例:

(3)用java实现

public class bubbleSort {

publicbubbleSort(){
inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };
int temp= 0 ;
for ( int i= 0 ;i<a.length- 1 ;i++){
for ( int j= 0 ;j<a.length- 1 -i;j++){
if (a[j]>a[j+ 1 ]){
temp=a[j];
a[j]=a[j+ 1 ];
a[j+ 1 ]=temp;
}
}
}

for ( int i= 0 ;i<a.length;i++){
System.out.println(a[i]);
}
}



6.快速排序

(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

(2)实例:

(3)用java实现


publicclass quickSort {

inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };
publicquickSort(){
quick(a);
for ( int i= 0 ;i<a.length;i++){
System.out.println(a[i]);
}
}
publicint getMiddle( int [] list, int low, int high) {
int tmp =list[low]; //数组的第一个作为中轴
while (low < high){
while (low < high&& list[high] >= tmp) {
high--;
}

list[low] =list[high]; //比中轴小的记录移到低端
while (low < high&& list[low] <= tmp) {
low++;
}

list[high] =list[low]; //比中轴大的记录移到高端
}
list[low] = tmp; //中轴记录到尾
return low; //返回中轴的位置
}

publicvoid _quickSort( int [] list, int low, int high) {
if (low < high){
int middle =getMiddle(list, low, high); //将list数组进行一分为二
_quickSort(list, low, middle - 1 ); //对低字表进行递归排序
_quickSort(list,middle + 1 , high); //对高字表进行递归排序
}
}

publicvoid quick( int [] a2) {
if (a2.length > 0 ) { //查看数组是否为空
_quickSort(a2, 0 , a2.length - 1 );
}
}
}



7、归并排序

(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

(2)实例:

(3)用java实现


import java.util.Arrays;

publicclass mergingSort {

inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };

publicmergingSort(){
sort(a, 0 ,a.length- 1 );
for ( int i= 0 ;i<a.length;i++)
System.out.println(a[i]);
}

publicvoid sort( int [] data, int left, int right) {
// TODO Auto-generatedmethod stub
if (left<right){
//找出中间索引
int center=(left+right)/ 2 ;
//对左边数组进行递归
sort(data,left,center);
//对右边数组进行递归
sort(data,center+ 1 ,right);
//合并
merge(data,left,center,right);
}

}

publicvoid merge( int [] data, int left, int center, int right) {
// TODO Auto-generatedmethod stub
int [] tmpArr=newint[data.length];
int mid=center+ 1 ;
//third记录中间数组的索引
int third=left;
int tmp=left;
while (left<=center&&mid<=right){
//从两个数组中取出最小的放入中间数组
if (data[left]<=data[mid]){
tmpArr[third++]=data[left++];
} else {
tmpArr[third++]=data[mid++];
}

}

//剩余部分依次放入中间数组
while (mid<=right){
tmpArr[third++]=data[mid++];
}

while (left<=center){
tmpArr[third++]=data[left++];
}

//将中间数组中的内容复制回原数组
while (tmp<=right){
data[tmp]=tmpArr[tmp++];
}
System.out.println(Arrays.toString(data));
}
}


8、基数排序

(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

(2)实例:

(3)用java实现

import java.util.ArrayList;
import java.util.List;

public class radixSort {
inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 101 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };
public radixSort(){
sort(a);
for (inti= 0 ;i<a.length;i++){
System.out.println(a[i]);
}
}
public void sort( int [] array){
//首先确定排序的趟数;
int max=array[ 0 ];
for (inti= 1 ;i<array.length;i++){
if (array[i]>max){
max=array[i];
}
}
int time= 0 ;
//判断位数;
while (max> 0 ){
max/= 10 ;
time++;
}

//建立10个队列;
List<ArrayList> queue=newArrayList<ArrayList>();
for ( int i= 0 ;i< 10 ;i++){
ArrayList<Integer>queue1= new ArrayList<Integer>();
queue.add(queue1);
}

//进行time次分配和收集;
for ( int i= 0 ;i<time;i++){
//分配数组元素;
for (intj= 0 ;j<array.length;j++){
//得到数字的第time+1位数;
int x=array[j]%( int )Math.pow( 10 ,i+ 1 )/( int )Math.pow( 10 , i);
ArrayList<Integer>queue2=queue.get(x);
queue2.add(array[j]);
queue.set(x, queue2);
}
int count= 0 ; //元素计数器;
//收集队列元素;
for ( int k= 0 ;k< 10 ;k++){
while (queue.get(k).size()> 0 ){
ArrayList<Integer>queue3=queue.get(k);
array[count]=queue3.get( 0 );
queue3.remove( 0 );
count++;
}
}
}
}
}


标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值