【卷积神经网络】(三)VGG
1.简介
VGG 是由卷积层和池化层构成的基础CNN。不过,如下图所示,它的特点在于将有权重的层(卷积层或者全连接层)叠加到16层(或者19层),具备了深度。
VGG中需要注意:
(1)基于3×3的小型滤波器的卷积层的运算是连续进行的。如上图所示,重复进行“卷积层叠加2次到4次,再通过池化层将大小减半”的处理,最后经由全连接层输出结果。
AlexNet 与 VGG 的网络结构比较:
同:本质上都是块设计。
基于Pytorch 的 VGG-11
构建模型
VGG-11 由 8个卷积层和三个全连接层构成。
import torch
from torch import nn
from d2l import torch as d2l
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
def vgg(conv_arch):
conv_blks = []
in_channels = 1
# 卷积层部分
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
# 全连接层部分
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
训练模型
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())