递推:
设a[n]是向上走n步的方法数,b[n]是向左或向右的方法数,
則a[n] = a[n-1] + b[n-1],b[n] = b[n-1] + 2*a[n-1];
因为f[n] = a[n]+b[n]
化简f[n] = 3*a[n-1] + 2*b[n-1] = 2*f[n-1] + a[n-1]
又因为f[n-2] = a[n-2] + b[n-2] = (a[n-1] - b[n-2]) + b[n-2] = a[n-1]
所以结论是:f[n]=2*f[n-1] + f[n-2];
#include<stdio.h>
int main()
{
int c,n,i;
int a[24]={0};
a[1]=3;
a[2]=7;
for(i=3;i<22;i++){
a[i]=a[i-1]*2+a[i-2];
}
scanf("%d",&c);
while(c--){
scanf("%d",&n);
printf("%d\n",a[n]);
}
return 0;
}