编程之美3.9
根据二叉树 的线序遍历和中序遍历可以重建一棵二叉树
首先找到中序遍历中前序遍历的的第一个元素的位置p,该元素是二叉树的根元素
找到p后根据中序遍历p的位置可以将中序遍历分为左右两部分,左边的数据在二叉树根节点的左子树上上,右边的数据在根节点的右子树上。
同样根据p可以将前序遍历分成左右子树两部分
重复上述步骤直到数据中的数据个数为0
代码如下
#include<iostream>
using namespace std;
/*
*authored by Shishuai
*Time 2014/3/21
*program:通过树的前序和中序结果得到原始的树结构
*/
typedef struct NODE
{
struct NODE *pLeft;
struct NODE *pRight;
char chValue;
}Node,*pNode;
char pPreOrder[6]= {'a','b','d','c','e','f'};
char pInOrder[6] = {'d','b','a','e','c','f'};
pNode Rebuild(char *pPreOrder,char *pInOrder,int nTreeLength);
int FindPostion(char value,char *pInOrder,int nTreeLength);
void Print(pNode Ptree);
int main()
{
pNode pTree=Rebuild(pPreOrder,pInOrder,6);
Print(pTree);
return 0;
}
pNode Rebuild(char *pPreOrder,char *pInOrder,int nTreeLength)
{
if(0==nTreeLength)
return NULL;
int pPos=FindPostion(pPreOrder[0],pInOrder,nTreeLength);
pNode ret=(pNode)malloc(sizeof(Node));
ret->chValue=pPreOrder[0];
ret->pLeft = Rebuild(pPreOrder+1,pInOrder,pPos);
ret->pRight= Rebuild(pPreOrder+pPos+1,pInOrder+pPos+1,nTreeLength-pPos-1);
return ret;
}
int FindPostion(char value,char *pInOrder,int nTreeLength)
{
int i=0;
for(;i<nTreeLength;i++)
{
if(pInOrder[i]==value)
return i;
}
return -1;
}
void Print(pNode Ptree)
{
if(NULL==Ptree)
return;
cout<<Ptree->chValue;
if(NULL!=Ptree->pLeft)
cout<<" left "<<Ptree->pLeft->chValue;
if(NULL!=Ptree->pRight)
cout<<" right "<<Ptree->pRight->chValue;
cout<<endl;
Print(Ptree->pLeft);
Print(Ptree->pRight);
}