Unit 1-Lecture 3:Well Order Principle (WOP)

本文介绍了良序原理,即每个非空的非负整数集合都有最小的元素,并提供了一个使用良序原理证明的模板。通过质因数分解定理作为例子,展示如何运用该原理来证明所有大于一的正整数都可以分解为质数的乘积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Well Order Principle :
Every nonempty set of nonnegative integers has a smallest element.
Template for Well Ordering Proofs :
To prove that “P(n) is true for all nonnegative integer n N , using the Well Ordering Principle:

  • Define the set C, of counterexamples to P being true. Specifically, define:
    C::={nN | NOT p(n) is true}
  • Assume for proof by contradiction that C is nonempty.
  • By the Well Ordering Principle, there will be a smallest element n, in C .
  • Reach a contradiction somehow—often by showing that P(n) is actually true or by showing that there is another member of C that is smaller than n. This is the open-ended part of the proof task.
  • Conclude that C must be empty, that is, no counterexamples exist.

Examlpe :
Prime Factorization Theorem:

  • Every positive integer greater than one can be factored as a product of primes.

Reference

[1] Lehman E, Leighton F H, Meyer A R. Mathematics for Computer Science[J]. 2015.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值