2009-03-30 22:04 by Snowtoday,17585 visits,
一、引言
对数据库索引的关注从未淡出我的们的讨论,那么数据库索引是什么样的?聚集索引与非聚集索引有什么不同?希望本文对各位同仁有一定的帮助。有不少存疑的地方,诚心希望各位不吝赐教指正,共同进步。[最近首页之争沸沸扬扬,也不知道这个放在这合适么,苦劳?功劳?……]
二、B-Tree
我们常见的数据库系统,其索引使用的数据结构多是B-Tree或者B+Tree。例如,MsSql使用的是B+Tree,Oracle及Sysbase使用的是B-Tree。所以在最开始,简单地介绍一下B-Tree。
B-Tree不同于BinaryTree(二叉树,最多有两个子树),一棵M阶的B-Tree满足以下条件:
1)每个结点至多有M个孩子;
2)除根结点和叶结点外,其它每个结点至少有M/2个孩子;
3)根结点至少有两个孩子(除非该树仅包含一个结点);
4)所有叶结点在同一层,叶结点不包含任何关键字信息;
5)有K个关键字的非叶结点恰好包含K+1个孩子;
另外,对于一个结点,其内部的关键字是从小到大排序的。以下是B-Tree(M=4)的样例:
对于每个结点,主要包含一个关键字数组Key[],一个指针数组(指向儿子)Son[]。在B-Tree内,查找的流程是:使用顺序查找(数组长度较短时)或折半查找方法查找Key[]数组,若找到关键字K,则返回该结点的地址及K在Key[]中的位置;否则,可确定K在某个Key[i]和Key[i+1]之间,则从Son[i]所指的子结点继续查找,直到在某结点中查找成功;或直至找到叶结点且叶结点中的查找仍不成功时,查找过程失败。
接着,我们使用以下图片演示如何生成B-Tree(M=4,依次插入1~6):
从图可见,当我们插入关键字4时,由于原结点已经满了,故进行分裂,基本按一半的原则进行分裂,然后取出中间的关键字2,升级(这里是成为根结点)。其它的依类推,就是这样一个大概的过程。
三、数据库索引
1.什么是索引
在数据库中,索引的含义与日常意义上的“索引”一词并无多大区别(想想小时候查字典),它是用于提高数据库表数据访问速度的数据库对象。
A)索引可以避免全表扫描。多数查询可以仅扫描少量索引页及数据页,而不是遍历所有数据页。
B)对于非聚集索引,有些查询甚至可以不访问数据页。
C)聚集索引可以避免数据插入操作集中于表的最后一个数据页。
D)一些情况下,索引还可用于避免排序操作。
当然,众所周知,虽然索引可以提高查询速度,但是它们也会导致数据库系统更新数据的性能下降,因为大部分数据更新需要同时更新索引。
2.索引的存储
一条索引记录中包含的基本信息包括:键值(即你定义索引时指定的所有字段的值)+逻辑指针(指向数据页或者另一索引页)。
当你为一张空表创建索引时,数据库系统将为你分配一个索引页,该索引页在你插入数据前一直是空的。此页此时既是根结点,也是叶结点。每当你往表中插入一行数据,数据库系统即向此根结点中插入一行索引记录。当根结点满时,数据库系统大抵按以下步骤进行分裂:
A)创建两个儿子结点
B)将原根结点中的数据近似地拆成两半,分别写入新的两个儿子结点
C)根结点中加上指向两个儿子结点的指针
通常状况下,由于索引记录仅包含索引字段值(以及4-9字节的指针),索引实体比真实的数据行要小许多,索引页相较数据页来说要密集许多。一个索引页可以存储数量更多的索引记录,这意味着在索引中查找时在I/O上占很大的优势,理解这一点有助于从本质上了解使用索引的优势。
结论: 查询数据就是查询占据很少索引页 的那些索引,因而在IO上更快。这些索引记录按照B+树或者B-来进行组织,使得查找起来更加快速。
3.索引的类型
A)聚集索引(决定表数据行的存储顺序):
表数据按照索引的顺序来存储的。对于聚集索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页。
语法 :CREATE CLUSTER INDEX index_name ON table_name(column_name1,column_name2,...)
B)非聚集索引(与表数据行存储顺序无关):
表数据存储顺序与索引顺序无关。对于非聚集索引,叶结点包含索引字段值及指向数据页数据行的逻辑指针,该层紧邻数据页,其行数量与数据表行数据量一致。
语法: CREATE INDEX mycolumn_index ON table_name(column_name1,column_name2,...)
在一张表上只能创建一个聚集索引,因为真实数据的物理顺序只可能是一种。如果一张表没有聚集索引,那么它被称为“堆集”(Heap)。这样的表中的数据行没有特定的顺序,所有的新行将被添加的表的末尾位置。
======================================================================================================
====================================== 数据库中的索引实例 ============================================
======================================================================================================
1 为where语句中的字段创建索引:
最普通的情况,是为出现在where子句的字段建一个索引。
CREATETABLEmytable(
idserial primary key,
category_id int not null default0,
user_id int not null default0,
adddate int not null default0
);
如果在查询时常用类似以下的语句:
SELECT * FROM mytable WHEREcategory_id=1;
最直接的应对之道,是为category_id建立一个简单的索引:
CREATE INDEX mytable_categoryidON mytable (category_id);
OK.如果有不止一个选择条件呢?例如:
SELECT * FROM mytable WHERE category_id=1 AND user_id=2;
第一反应可能是,再给user_id建立一个索引。不好,这不是一个最佳的方法。可以建立多重的索引。
CREATE INDEX mytable_categoryid_userid ON mytable(category_id,user_id);
注意到在命名时的习惯了吗?使用"表名_字段1名_字段2名"的方式。很快就会知道为什么这样做了。
现在已经为适当的字段建立了索引,不过,还是有点不放心吧,可能会问,数据库会真正用到这些索引吗?测试一下就OK,对于大多数的数据库来说,这是很容易的,只要使用EXPLAIN命令:
EXPLAIN
SELECT * FROM mytable
WHERE category_id=1 ANDuser_id=2;
This is what Postgres 7.1returns (exactlyasI expected)
NOTICE:QUERY PLAN:
Index Scan using mytable_categoryid_useridon
mytable(cost=0.00..2.02rows=1 width=16)
EXPLAIN
以上是postgres的数据,可以看到该数据库在查询的时候使用了一个索引(一个好开始),而且它使用的是创建的第二个索引。看到上面命名的好处了吧,马上知道它使用适当的索引了。
2 为orderby中的字段创建索引:
接着,来个稍微复杂一点的,如果有个ORDERBY字句呢?不管你信不信,大多数的数据库在使用orderby的时候,都将会从索引中受益。
SELECT * FROM mytable
WHERE category_id=1 AND user_id=2
ORDER BY adddate DESC;
很简单,就象为where字句中的字段建立一个索引一样,也为ORDERBY的字句中的字段建立一个索引:
CREATE INDEX mytable_categoryid_userid_adddateON mytable (category_id, user_id, adddate);
注意:"mytable_categoryid_userid_adddate"将会被截短为"mytable_categoryid_userid_addda"
CREATE
EXPLAIN SELECT * FROMmytable
WHERE category_id=1 ANDuser_id=2
ORDER BY adddate DESC;
NOTICE:QUERY PLAN:
Sort(cost=2.03..2.03 rows=1 width=16) (为什么会多做一个排序呢???)
->Index Scan using mytable_categoryid_userid_addda
onmytable(cost=0.00..2.02rows=1 width=16)
EXPLAIN
看看EXPLAIN的输出,数据库多做了一个没有要求的排序,这下知道性能如何受损了吧,看来对于数据库的自身运作是有点过于乐观了,那么,给数据库多一点提示吧。
为了跳过排序这一步,并不需要其它另外的索引,只要将查询语句稍微改一下。这里用的是postgres,将给该数据库一个额外的提示--在ORDERBY语句中,加入where语句中的字段。这只是一个技术上的处理,并不是必须的,因为实际上在另外两个字段上,并不会有任何的排序操作,不过如果加入,postgres将会知道哪些是它应该做的。
EXPLAIN
SELECT * FROM mytable
WHERE category_id=1 ANDuser_id=2
ORDER BY category_id DESC,user_id DESC,adddate DESC;
NOTICE:QUERY PLAN:
Index Scan Backward usingmytable_categoryid_userid_adddaon my table
(cost=0.00..2.02 rows=1width=16)
EXPLAIN
现在使用料想的索引了,而且它还挺聪明,知道可以从索引后面开始读,从而避免了任何的排序。
以上说得细了一点,不过如果数据库非常巨大,并且每日的页面请求达上百万算,想会获益良多的。
不过,如果要做更为复杂的查询呢,例如将多张表结合起来查询,特别是where限制字句中的字段是来自不止一个表格时,应该怎样处理呢?通常都尽量避免这种做法,因为这样数据库要将各个表中的东西都结合起来,然后再排除那些不合适的行,搞不好开销会很大。
如果不能避免,应该查看每张要结合起来的表,并且使用以上的策略来建立索引,然后再用EXPLAIN命令验证一下是否使用了料想中的索引。如果是的话,就OK。不是的话,可能要建立临时的表来将他们结合在一起,并且使用适当的索引。
要注意的是,建立太多的索引将会影响更新和插入的速度,因为它需要同样更新每个索引文件。
对于一个经常需要更新和插入的表格,就没有必要为一个很少使用的where字句单独建立索引了,对于比较小的表,排序的开销不会很大,也没有必要建立另外的索引。
以上介绍的只是一些十分基本的东西,其实里面的学问也不少,单凭EXPLAIN是不能判定该方法是否就是最优化的,每个数据库都有自己的一些优化器,虽然可能还不太完善,但是它们都会在查询时对比过哪种方式较快,在某些情况下,建立索引的话也未必会快,例如索引放在一个不连续的存储空间时,这会增加读磁盘的负担,因此,哪个是最优,应该通过实际的使用环境来检验。
在刚开始的时候,如果表不大,没有必要作索引,意见是在需要的时候才作索引,也可用一些命令来优化表,例如MySQL可用"OPTIMIZETABLE"。
======================================================================================================
======================================两种索引类型的深入讲解==========================================
======================================================================================================
4.聚集索引
在聚集索引中,叶结点也即数据结点,所有数据行的存储顺序与索引的存储顺序一致。
1)聚集索引与查询操作
如上图,我们在名字字段上建立聚集索引,当需要在根据此字段查找特定的记录时,数据库系统会根据特定的系统表查找的此索引的根,然后根据指针查找下一个,直到找到。例如我们要查询“Green”,由于它介于[Bennet,Karsen],据此我们找到了索引页1007,在该页中“Green”介于[Greane, Hunter]间,据此我们找到叶结点1133(也即数据结点),并最终在此页中找以了目标数据行。
此次查询的IO包括3个索引页的查询(其中最后一次实际上是在数据页中查询)。这里的查找可能是从磁盘读取(Physical Read)或是从缓存中读取(Logical Read),如果此表访问频率较高,那么索引树中较高层的索引很可能在缓存中被找到。所以真正的IO可能小于上面的情况。
2)聚集索引与插入操作
最简单的情况下,插入操作根据索引找到对应的数据页,然后通过挪动已有的记录为新数据腾出空间,最后插入数据。
如果数据页已满,则需要拆分数据页(页拆分是一种耗费资源的操作,一般数据库系统中会有相应的机制要尽量减少页拆分的次数,通常是通过为每页预留空间来实现):
A)在该使用的数据段(extent)上分配新的数据页,如果数据段已满,则需要分配新段。
B)调整索引指针,这需要将相应的索引页读入内存并加锁。
C)大约有一半的数据行被归入新的数据页中。
D)如果表还有非聚集索引,则需要更新这些索引指向新的数据页。
特殊情况:
A)如果新插入的一条记录包含很大的数据,可能会分配两个新数据页,其中之一用来存储新记录,另一存储从原页中拆分出来的数据。
B)通常数据库系统中会将重复的数据记录存储于相同的页中。
C)类似于自增列为聚集索引的,数据库系统可能并不拆分数据页,页只是简单的新添数据页。
3)聚集索引与删除操作
删除行将导致其下方的数据行向上移动以填充删除记录造成的空白。
如果删除的行是该数据页中的最后一行,那么该数据页将被回收,相应的索引页中的记录将被删除。如果回收的数据页位于跟该表的其它数据页相同的段上,那么它可能在随后的时间内被利用。如果该数据页是该段的唯一一个数据页,则该段也被回收。
对于数据的删除操作,可能导致索引页中仅有一条记录,这时,该记录可能会被移至邻近的索引页中,原索引页将被回收,即所谓的“索引合并”。
5.非聚集索引
非聚集索引与聚集索引相比:
A)叶子结点并非数据结点
B)叶子结点为每一真正的数据行存储一个“键-指针”对
C)叶子结点中还存储了一个指针偏移量,根据页指针及指针偏移量可以定位到具体的数据行。
D)类似的,在除叶结点外的其它索引结点,存储的也是类似的内容,只不过它是指向下一级的索引页的。
聚集索引是一种稀疏索引,数据页上一级的索引页存储的是页指针,而不是行指针。而对于非聚集索引,则是密集索引,在数据页的上一级索引页它为每一个数据行存储一条索引记录。
对于根与中间级的索引记录,它的结构包括:
A)索引字段值
B)RowId(即对应数据页的页指针+指针偏移量)。在高层的索引页中包含RowId是为了当索引允许重复值时,当更改数据时精确定位数据行。
C)下一级索引页的指针
对于叶子层的索引对象,它的结构包括:
A)索引字段值
B)RowId
1)非聚集索引与查询操作
针对上图,如果我们同样查找“Green”,那么一次查询操作将包含以下IO:3个索引页的读取+1个数据页的读取。同样,由于缓存的关系,真实的IO实际可能要小于上面列出的。
2)非聚集索引与插入操作
如果一张表包含一个非聚集索引但没有聚集索引,则新的数据将被插入到最末一个数据页中,然后非聚集索引将被更新。如果也包含聚集索引,该聚集索引将被用于查找新行将要处于什么位置,随后,聚集索引、以及非聚集索引将被更新。
3)非聚集索引与删除操作
如果在删除命令的Where子句中包含的列上,建有非聚集索引,那么该非聚集索引将被用于查找数据行的位置,数据删除之后,位于索引叶子上的对应记录也将被删除。如果该表上有其它非聚集索引,则它们叶子结点上的相应数据也要删除。
如果删除的数据是该数所页中的唯一一条,则该页也被回收,同时需要更新各个索引树上的指针。
由于没有自动的合并功能,如果应用程序中有频繁的随机删除操作,最后可能导致表包含多个数据页,但每个页中只有少量数据。
6.索引覆盖
索引覆盖是这样一种索引策略:当某一查询中包含的所需字段皆包含于一个索引中,此时索引将大大提高查询性能。
包含多个字段的索引,称为复合索引。索引最多可以包含31个字段,索引记录最大长度为600B。如果你在若干个字段上创建了一个复合的非聚集索引,且你的查询中所需Select字段及Where,Order By,GroupBy,Having子句中所涉及的字段都包含在索引中,则只搜索索引页即可满足查询,而不需要访问数据页。由于非聚集索引的叶结点包含所有数据行中的索引列值,使用这些结点即可返回真正的数据,这种情况称之为“索引覆盖”。
在索引覆盖的情况下,包含两种索引扫描:
A)匹配索引扫描
B)非匹配索引扫描
1)匹配索引扫描
此类索引扫描可以让我们省去访问数据页的步骤,当查询仅返回一行数据时,性能提高是有限的,但在范围查询的情况下,性能提高将随结果集数量的增长而增长。
针对此类扫描,索引必须包含查询中涉及的的所有字段,另外,还需要满足:Where子句中包含索引中的“引导列”(Leading Column),例如一个复合索引包含A,B,C,D四列,则A为“引导列”。如果Where子句中所包含列是BCD或者BD等情况,则只能使用非匹配索引扫描。
2)非配置索引扫描
正如上述,如果Where子句中不包含索引的导引列,那么将使用非配置索引扫描。这最终导致扫描索引树上的所有叶子结点,当然,它的性能通常仍强于扫描所有的数据页。
[参考]
[1]http://manuals.sybase.com/onlinebooks/group-asarc/asg1200e/aseperf/@Generic__BookTextView/3358
[2]http://publib.boulder.ibm.com/infocenter/idshelp/v10/index.jsp?topic=/com.ibm.adref.doc/adref235.htm
源文档 <http://www.cnblogs.com/KissKnife/archive/2009/03/30/1425534.html>