转自:http://zh.wikipedia.org/wiki/%E5%BA%A6%E9%87%8F%E7%A9%BA%E9%97%B4
在数学中,度量空间是一个集合,在其中可以定义在这个集合的元素之间的距离(叫做度量)的概念。
度量空间中最符合我们对于现实直观理解的是三维欧几里得空间。事实上,“度量”的概念就是对从欧几里得距离的四个周知的性质引发的欧几里得度量的推广。欧几里得度量定义了在两个点之间的距离为连接它们的直线的长度。
空间的几何性质依赖于所选择的度量,通过使用不同的度量我们可以构造有趣的非欧几里得几何,比如在广义相对论中用到的几何。
度量空间还引发拓扑性质如开集和闭集,这导致了对更抽象的拓扑空间的研究。