题目:Common Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14543 Accepted Submission(s): 6027
Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X
if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and
Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
题目分析:
利用动态规划
数组c[i][j]表示当x,z序列长度分别为i和j时的最长公共子序列长度
有动态方程:
1.当i=0||j=0时,c[i][j]=0;
2.当x[i]=z[j]时,c[i][j]=c[i-1][j-1]+1;
3.当x[i]!=z[j]时,c[i][j]=max{c[i-1][j] , c[i][j-1]};
代码:
#include<iostream>
#include<String>
using namespace std;
int c[1000][1000]; //记录x,z序列长为i,j是的公共子序列最大长度
int length(char *x,char *z)
{
int i,j;
int lenx=strlen(x);
int lenz=strlen(z);
for(i=0;i<lenx;i++)
c[i][0]=0;
for(j=0;j<lenz;j++)
c[0][j]=0;
for(i=0;i<lenx;i++)
{
for(j=0;j<lenz;j++)
{
if(x[i]==z[j])
c[i+1][j+1]=c[i][j]+1;
else
{
if(c[i][j+1]>=c[i+1][j])
c[i+1][j+1]=c[i][j+1];
else
c[i+1][j+1]=c[i+1][j];
}
}
}
return c[lenx][lenz];
}
char x[1000];
char z[1000];
int main()
{
int len;
while(cin>>x>>z)
{
len=length(x,z);
cout<<len<<endl;
}
return 0;
}

本文深入探讨了求解两个序列最长公共子序列的问题,通过动态规划方法给出了解决方案,并提供了实现代码。
337

被折叠的 条评论
为什么被折叠?



