1159Common Subsequence(最长公共子序列)

本文深入探讨了求解两个序列最长公共子序列的问题,通过动态规划方法给出了解决方案,并提供了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14543    Accepted Submission(s): 6027

Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
 
Sample Input
abcfbc abfcab programming contest abcd mnp
 

Sample Output

4 2 0
 

题目分析:

利用动态规划

数组c[i][j]表示当x,z序列长度分别为i和j时的最长公共子序列长度

有动态方程:

1.当i=0||j=0时,c[i][j]=0;

2.当x[i]=z[j]时,c[i][j]=c[i-1][j-1]+1;

3.当x[i]!=z[j]时,c[i][j]=max{c[i-1][j]  ,   c[i][j-1]};

代码:

#include<iostream>
#include<String>
using namespace std;

int c[1000][1000];    //记录x,z序列长为i,j是的公共子序列最大长度

int length(char *x,char *z)
{
	int i,j;
	int lenx=strlen(x);
	int lenz=strlen(z);
	for(i=0;i<lenx;i++)
		c[i][0]=0;
	for(j=0;j<lenz;j++)
		c[0][j]=0;

	for(i=0;i<lenx;i++)
	{
		for(j=0;j<lenz;j++)
		{
			if(x[i]==z[j])
				c[i+1][j+1]=c[i][j]+1;
			else
			{
				if(c[i][j+1]>=c[i+1][j])
					c[i+1][j+1]=c[i][j+1];
				else
					c[i+1][j+1]=c[i+1][j];
			}
		}
	}
	return c[lenx][lenz];
}
char x[1000];
char z[1000];
int main()
{
	int len;	
	while(cin>>x>>z)
	{
		len=length(x,z);
		cout<<len<<endl;
	}
	return 0;
}
		


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值