#include<iostream>
#include<stdio.h>
#include<vector>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long LL;
const int MAXN = 100000 + 5;
LL aa[MAXN];//树上结点初始值
int siz[MAXN];//子树大小包括自己
int dep[MAXN];//深度
int top[MAXN];//重链起点
int fa[MAXN];//父亲
int son[MAXN];//重链上的儿子
int num[MAXN];//线段树标号
int pre[MAXN];//num的反函数
int vis[MAXN];//标记走过
vector<int>v[MAXN];//边
LL tre[MAXN << 2];//线段树所在点的区间和
LL add[MAXN << 2];//线段树laz
int n;//总节点数
LL ans;//树上查询的答案
int tot;//dfs序所需
void update(int t, int l, int r, int x, int y, LL k);//线段树更新
void query(int t, int l, int r, int x, int y, LL ad);//线段树查询
void build(int t, int l, int r);//用初值建线段树
int dfs1(int last, int t);//第一次dfs得到fa dep siz son
void dfs(int t, int ttop);//第二次dfs得到num pre top
void update_on_tree(int a, int b, LL z);//树上路径更新,a-b都加z
void query_on_tree(int a, int b);//树上路径查询a-b
int dfs1(int last, int t)
{
fa[t] = last;
dep[t] = dep[last] + 1;
siz[t] = 1;
vis[t] = 1;
int I = -1;
int maxson = 0;
for (int i = 0; i < v[t].size(); i++)
{
if (vis[v[t][i]] == 0)
{
siz[t] += dfs1(t, v[t][i]);
if (siz[v[t][i]] > maxson)
{
I = i;
maxson = siz[v[t][i]];
}
}
}
if (I >= 0)
son[t] = v[t][I];
else
son[t] = -1;
return siz[t];
}
void dfs(int t, int ttop)
{
top[t] = ttop;
vis[t] = 1;
num[t] = tot;
pre[tot] = t;
tot++;
if (son[t] > 0)
dfs(son[t], ttop);
for (int i = 0; i < v[t].size(); i++)
{
if (vis[v[t][i]] == 0)
{
if (v[t][i] == son[t])
continue;
dfs(v[t][i], v[t][i]);
}
}
}
void build(int t, int l, int r)
{
if (l == r)
{
tre[t] = aa[pre[l]];
return;
}
int mid = l + r >> 1;
build(t << 1, l, mid);
build(t << 1 | 1, mid + 1, r);
tre[t] = tre[t << 1] + tre[t << 1 | 1];
}
void update(int t, int l, int r, int x, int y, LL k)
{
tre[t] += (min(r, y) - max(l, x) + 1)*k;
if (l >= x && r <= y)
{
add[t] += k;
return;
}
int mid = l + r >> 1;
if (y <= mid)
{
update(t << 1, l, mid, x, y, k);
}
else if (x > mid)
{
update(t << 1 | 1, mid + 1, r, x, y, k);
}
else
{
update(t << 1, l, mid, x, y, k);
update(t << 1 | 1, mid + 1, r, x, y, k);
}
}
void query(int t, int l, int r, int x, int y, LL ad)
{
if (l >= x && r <= y)
{
ans += tre[t];
ans += ad * (r - l + 1);
return;
}
int mid = l + r >> 1;
if (y <= mid)
{
query(t << 1, l, mid, x, y, ad + add[t]);
}
else if (x > mid)
{
query(t << 1 | 1, mid + 1, r, x, y, ad + add[t]);
}
else
{
query(t << 1, l, mid, x, y, ad + add[t]);
query(t << 1 | 1, mid + 1, r, x, y, ad + add[t]);
}
}
void update_on_tree(int a, int b, LL z)
{
if (dep[top[a]] < dep[top[b]])
swap(a, b);
if (top[a] == top[b])
{
a = num[a];
b = num[b];
if (a > b)
swap(a, b);
update(1, 1, n, a, b, z);
return;
}
update(1, 1, n, num[top[a]], num[a], z);
update_on_tree(fa[top[a]], b, z);
}
void query_on_tree(int a, int b)
{
if (dep[top[a]] < dep[top[b]])
swap(a, b);
if (top[a] == top[b])
{
a = num[a];
b = num[b];
if (a > b)
swap(a, b);
query(1, 1, n, a, b, 0);
return;
}
query(1, 1, n, num[top[a]], num[a], 0);
query_on_tree(fa[top[a]], b);
return;
}
int main()
{
int m;
scanf("%d%d", &n,&m);//n个点m个操作
for (int i = 1; i <= n; i++)//输入树结点的初始值
{
scanf("%lld", &aa[i]);
}
for (int i = 1; i < n; i++)//建边
{
int a, b;
scanf("%d%d", &a, &b);
v[a].push_back(b);
v[b].push_back(a);
}
int root = 1;//根为1
dep[root] = 1;
tot = 1;
dfs1(root, root);
memset(vis, 0, sizeof(vis));
dfs(root, root);
for (int i = 0; i < m; i++)
{
int Q,x,y,z;
ans = 0;
scanf("%d", &Q);
switch (Q)
{
case 1://x到y路径上的结点都加z
scanf("%d%d%d", &x, &y, &z);
update_on_tree(x, y, z);
break;
case 2://求x到y路径上的结点和
scanf("%d%d", &x, &y);
query_on_tree(x, y);
printf("%lld\n", ans);
break;
case 3://以x为根的子树所有节点都加z
scanf("%d%d",&x,&z);
update(1, 1, n, num[x], num[x] + siz[x] - 1, z);
break;
case 4://求以x为根的子树所有结点之和
scanf("%d", &x);
query(1, 1, n, num[x], num[x] + siz[x] - 1, 0);
printf("%lld\n", ans);
break;
default:
break;
}
}
}
树链剖分模板
最新推荐文章于 2021-07-25 17:09:52 发布