前言
在论文阅读的过程中,经常遇到使用特异性(specificity)和灵敏度(sensitivity)这两个指标来描述分类器的性能。对这两个指标表示的含有一些模糊,这里查阅了相关资料后记录一下。
分类问题
考虑一个二分类的情况,类别为1和0,我们将1和0分别作为正类(positive)和负类(negative),则实际分类的结果有4种,表格如下:
从这个表格中可以引出一些其它的评价指标:
- ACC:classification accuracy,描述分类器的分类准确率
计算公式为:ACC=(TP+TN)/(TP+FP+FN+TN)
- BER:balanced error rate
计算公式为:BER=1/2*(FPR+FN/(FN+TP))
- TPR:true positive rate,描述识别出的所有正例占所有正例的比例,敏感度(sensitivity)、查全率(Recall)
计算公式为:TPR=TP/ (TP+ FN)
- FPR:false positive rate,描述将负例识别为正例的情况占所有负例的比例
计算公式为:FPR= FP / (FP + TN)
- TNR:true negative rate,描述识别出的负例占所有负例的比例,特异度(specificity)
计算公式为:TNR= TN / (FP + TN)
- PPV: