pytorch nn.functional.dropout的坑

作者:雷杰
链接:https://www.zhihu.com/question/67209417/answer/302434279
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

刚踩的坑, 差点就哭出来了TT. --- 我明明加了一百个dropout, 为什么结果一点都没变


使用F.dropout ( nn.functional.dropout )的时候需要设置它的training这个状态参数与模型整体的一致.

比如:

Class DropoutFC(nn.Module):
    def __init__(self):
        super(DropoutFC, self).__init__()
        self.fc = nn.Linear(100,20)

    def forward(self, input):
        out = self.fc(input)
        out = F.dropout(out, p=0.5)
        return out

Net = DropoutFC()
Net.train()

# train the Net

这段代码中的F.dropout实际上是没有任何用的, 因为它的training状态一直是默认值False. 由于F.dropout只是相当于引用的一个外部函数, 模型整体的training状态变化也不会引起F.dropout这个函数的training状态发生变化. 所以, 此处的out = F.dropout(out) 就是 out = out. Ref: github.com/pytorch/pyto


正确的使用方法如下, 将模型整体的training状态参数传入dropout函数

Class DropoutFC(nn.Module):
   def __init__(self):
       super(DropoutFC, self).__init__()
       self.fc = nn.Linear(100,20)

   def forward(self, input):
       out = self.fc(input)
       out = F.dropout(out, p=0.5, training=self.training)
       return out

Net = DropoutFC()
Net.train()

# train the Net


或者直接使用nn.Dropout() (nn.Dropout()实际上是对F.dropout的一个包装, 也将self.training传入了) Ref: github.com/pytorch/pyto

Class DropoutFC(nn.Module):
  def __init__(self):
      super(DropoutFC, self).__init__()
      self.fc = nn.Linear(100,20)
      self.dropout = nn.Dropout(p=0.5)

  def forward(self, input):
      out = self.fc(input)
      out = self.dropout(out)
      return out
Net = DropoutFC()
Net.train()

# train the Net
### 回答1: torch.nn.functional.dropoutPyTorch中的一个函数,用于在神经网络中进行dropout操作。dropout是一种正则化技术,可以在训练过程中随机地将一些神经元的输出置为,从而减少过拟合的风险。该函数的输入包括输入张量、dropout概率和是否在训练模式下执行dropout操作。输出为执行dropout操作后的张量。 ### 回答2: torch.nn.functional.dropoutPyTorch中的一个函数,用于实现dropout操作。在深度学习中,dropout是一种常用的正则化技术,通过随机将某些神经元的输出置零,来减少过拟合的风险。 dropout函数的输入参数包括三个:input输入张量、p dropout概率以及training模式。其中,input是一个具有任意形状的张量,p是将输入置零的概率,training标志表示模型当前是否处于训练模式。 dropout的工作原理是对输入张量的每个元素以概率p置零,然后按照比例1/(1-p)放大未置零的元素,以保持期望值不变。这种随机置零的操作,可以看作是在模型中的不同路径间进行了随机选择,从而减少了神经元之间的依赖关系,防止过拟合。 在训练模式下,dropout可以有效地减少神经元间的共适应性,提高模型的泛化能力。而在评估模式下,dropout被关闭,可以利用所有神经元的权重进行预测,得到更准确的结果。 总之,torch.nn.functional.dropoutPyTorch中实现dropout操作的函数。它可以在训练模式下通过随机置零神经元的输出来减少过拟合,在评估模式下则关闭dropout,利用所有神经元进行预测。通过合理配置dropout的概率,可以提高深度学习模型的泛化能力。 ### 回答3: torch.nn.functional.dropoutPyTorch中一个用于进行dropout操作的函数。dropout是深度学习中一种常用的正则化方法,用于防止神经网络过拟合。 在深度学习中,神经网络的过拟合是指训练过程中模型过度拟合训练数据,导致在测试阶段模型表现不佳。为了减少过拟合,dropout通过在训练过程中将一部分神经元设置为0来随机丢弃一些神经元,限制了每个神经元对其他神经元的依赖,从而减少了模型的复杂性。 torch.nn.functional.dropout函数的调用方式为torch.nn.functional.dropout(input, p=0.5, training=True, inplace=False)。 其中,input是输入的特征张量;p是dropout的概率,表示将神经元置为0的概率,默认为0.5;training表示是否在训练阶段使用dropout,默认为True;inplace表示是否原地操作,即是否覆盖输入张量,默认为False。 torch.nn.functional.dropout函数会根据给定的dropout概率随机将输入张量中的某些元素置为0,并进行缩放,以保持期望输入的总和不变。同时,如果training为False,则直接返回输入张量,不进行dropout操作。 总之,torch.nn.functional.dropout函数是PyTorch中用于进行dropout操作的函数,可以一定程度上减小神经网络的过拟合风险。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值