定理
若存在整数 a , p 且g c d ( a , p ) = 1 gcd(a,p)=1gcd(a,p)=1,即二者互为质数,则有
a ( p − 1 ) ≡ 1 ( m o d p ) a^{(p-1)}≡ 1(mod p)
a
(p−1)
≡1(modp)
目录
引理
引理一
若a,b,c为任意3个整数,m为正整数,且g c d ( m , c ) = 1 gcd(m,c)=1gcd(m,c)=1,则当a ∗ c ≡ b ∗ c ( m o d m ) a*c\equiv b*c(mod\ m)a∗c≡b∗c(mod m)时,有a ≡ b ( m o d m ) a\equiv b(mod\ m)a≡b(mod m)。
引理二
设m是一个整数且m>1,b是一个整数且(m,b)=1。如果a[1],a[2],a[3],a[4],…a[m]是模m的一个完全剩余系,则b·a[1],b·a[2],b·a[3],b·a[4],…b·a[m]也构成模m的一个完全剩余系。
证明
若存在2个整数b·a[i]和b·a[j]同余即b·a[i]≡b·a[j](mod m)…(i>=1 && j&g

最低0.47元/天 解锁文章
7837

被折叠的 条评论
为什么被折叠?



