73. Set Matrix Zeroes

本文介绍了一种高效的矩阵零填充算法,该算法能够在不使用额外空间的情况下将矩阵中元素为0的整行和整列设置为0。通过利用矩阵的第一行和第一列来记录哪些行和列需要被设置为0,从而实现了空间复杂度从O(m+n)到O(1)的优化。


Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place.


1. A straight forward solution using O(mn) space is probably a bad idea.
2. A simple improvement uses O(m + n) space, but still not the best solution.

Similar to the second solution, instead of using extra space, we could just use the first column and the first row to record the information whether the col or row need to be set to 0 or not

Code:

public class Solution {
     // using O(m+n) is easy, to enable O(1), we have to use the space within the matrix   
    public void setZeroes(int[][] matrix) {
        if(matrix == null || matrix.length == 0)
            return;
        
        int rows = matrix.length;
        int cols = matrix[0].length;
        
        boolean empty_row0 = false;
        boolean empty_col0 = false;
        for(int i = 0; i < cols; i++){
            if(matrix[0][i] == 0){
                empty_row0 = true;
                break;
            }
        }
        
        for(int i = 0; i < rows; i++){
            if(matrix[i][0] == 0){
                empty_col0 = true;
                break;
            }
        }
        
        for(int i = 1; i < rows; i++) {
            for(int j =1; j<cols; j++){
                if(matrix[i][j] == 0){
                    matrix[0][j] = 0;
                    matrix[i][0] = 0;
                }
            }
        }
        
        for(int i = 1; i<rows; i++) {
            for (int j=1; j< cols; j++) {
                if(matrix[0][j] == 0 || matrix[i][0] == 0)
                    matrix[i][j] = 0;
            }
        }
      
        if(empty_row0){
            for(int i = 0; i < cols; i++){
                matrix[0][i] = 0;
            }           
        }
        
        if(empty_col0){
            for(int i = 0; i < rows; i++){
                matrix[i][0] = 0;
            }           
        }

    }
}


import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['房子面积', '房子价格']) print(data.head(10)) print(data.describe()) # 绘制散点图 data.plot(kind='scatter', x='房子面积', y='房子价格') plt.show() def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', 1) cols = data.shape[1] X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列 y = data.iloc[:,cols-1:cols]#X是所有行,最后一列 print(X.head()) print(y.head()) X = np.matrix(X.values) y = np.matrix(y.values) theta = np.matrix(np.array([0,0])) print(theta) print(X.shape, theta.shape, y.shape) def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, iters) print(g) print(computeCost(X, y, g)) x = np.linspace(data.Population.min(), data.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Population, data.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title('北京房价拟合曲线图') plt.show()
06-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值