Architecture
Ø 把unresolved logical plan转化成resolved logical plan,这一步参考analysis的实现
Ø 把resolved logical plan转化成optimized logical plan,这一步参考optimize的实现
Ø 把optimized logical plan转化成physical plan,这一步参考QueryPlanner Strategy的实现
Source Code Module
Rule
RuleExecutor是规则执行类,下面两个实现会具体讲:
Analyzer
Optimizer
RuleExecutor 支持的策略:一次或多次。用来控制 converge结束的条件。这里的Strategy名字感觉有点误导人。
- /**
- * An execution strategy for rules that indicates the maximum number of executions. If the
- * execution reaches fix point (i.e. converge) before maxIterations, it will stop.
- */
- abstract class Strategy { def maxIterations: Int }
- /** A strategy that only runs once. */
- case object Once extends Strategy { val maxIterations = 1 }
- /** A strategy that runs until fix point or maxIterations times, whichever comes first. */
- case class FixedPoint(maxIterations: Int) extends Strategy
- /** A batch of rules. */
- protected case class Batch(name: String, strategy: Strategy, rules: Rule[TreeType]*)
- /** Defines a sequence of rule batches, to be overridden by the implementation. */
- protected val batches: Seq[Batch]
converge的条件是达到最大策略次数或者两个TreeNode相等。apply()处理过程如下:
- /**
- * Executes the batches of rules defined by the subclass. The batches are executed serially
- * using the defined execution strategy. Within each batch, rules are also executed serially.
- */
- def apply(plan: TreeType): TreeType = {
- var curPlan = plan
- batches.foreach { batch =>
- var iteration = 1
- var lastPlan = curPlan
- curPlan = batch.rules.foldLeft(curPlan) { case (plan, rule) => rule(plan) }
- // Run until fix point (or the max number of iterations as specified in the strategy.
- while (iteration < batch.strategy.maxIterations && !curPlan.fastEquals(lastPlan)) {
- lastPlan = curPlan
- curPlan = batch.rules.foldLeft(curPlan) {
- case (plan, rule) =>
- val result = rule(plan)
- if (!result.fastEquals(plan)) {
- logger.debug(...)
- }
- result
- }
- iteration += 1
- }
- }
- curPlan
- }
下面具体介绍RuleExecutor的实现。
Analyzer
Analyzer使用于对最初的unresolved logical plan转化成为logical plan。这部分的分析会涵盖整个analysis package。
作用是把未确定的属性和关系,通过Schema信息(来自于Catalog类)和方法注册类来确定下来,这个过程中有三步,第三步会包含许多次的迭代。
- /**
- * Provides a logical query plan analyzer, which translates [[UnresolvedAttribute]]s and
- * [[UnresolvedRelation]]s into fully typed objects using information in a schema [[Catalog]] and
- * a [[FunctionRegistry]].
- */
- class Analyzer(catalog: Catalog, registry: FunctionRegistry, caseSensitive: Boolean)
- extends RuleExecutor[LogicalPlan] with HiveTypeCoercion {
首先,Catalog类是一个记录表信息的类,专门提供给Analyzer用。
- trait Catalog {
- def lookupRelation(
- databaseName: Option[String],
- tableName: String,
- alias: Option[String] = None): LogicalPlan
- def registerTable(databaseName: Option[String], tableName: String, plan: LogicalPlan): Unit
- }
看一个SimpleCatalog的实现,该类在SQLContext里使用, 把表名和LogicalPlan存在HashMap里维护起来,生命周期随上下文。提供注册表、删除表、查找表的功能。
- class SimpleCatalog extends Catalog {
- val tables = new mutable.HashMap[String, LogicalPlan]()
- def registerTable(databaseName: Option[String],tableName: String, plan: LogicalPlan): Unit = {
- tables += ((tableName, plan))
- }
- def dropTable(tableName: String) = tables -= tableName
- def lookupRelation(
- databaseName: Option[String],
- tableName: String,
- alias: Option[String] = None): LogicalPlan = {
- val table = tables.get(tableName).getOrElse(sys.error(s"Table Not Found: $tableName"))
- // If an alias was specified by the lookup, wrap the plan in a subquery so that attributes are
- // properly qualified with this alias.
- alias.map(a => Subquery(a.toLowerCase, table)).getOrElse(table)
- }
- }
在查找的时候可以代入一个别名,会把他包装成一个Subquery。Subquery是个简单的case class。
- case class Subquery(alias: String, child: LogicalPlan) extends UnaryNode {
- def output = child.output.map(_.withQualifiers(alias :: Nil))
- def references = Set.empty
- }
FunctionRegistry类似于Catalog,记录的是函数,在hive package里,处理的是Hive的UDF
- trait FunctionRegistry {
- def lookupFunction(name: String, children: Seq[Expression]): Expression
- }
FunctionRegistry的实现在Catalyst里目前只有一个(在Hive模块里有实现,具体在最后一节Hive内),如下,如果你要查找方法,就会抛异常。
- /**
- * A trivial catalog that returns an error when a function is requested. Used for testing when all
- * functions are already filled in and the analyser needs only to resolve attribute references.
- */
- object EmptyFunctionRegistry extends FunctionRegistry {
- def lookupFunction(name: String, children: Seq[Expression]): Expression = {
- throw new UnsupportedOperationException
- }
- }
回到Analyzer,SQLContext在使用Analyzer前,这样生成:
- @transient
- protected[sql] lazy val catalog: Catalog = new SimpleCatalog
- protected[sql] lazy val analyzer: Analyzer =
- new Analyzer(catalog, EmptyFunctionRegistry, caseSensitive = true)
接下来看Catalyst现在的Analyzer作为一个RuleExecutor,已经实现的功能:
- class Analyzer(catalog: Catalog, registry: FunctionRegistry, caseSensitive: Boolean)
- extends RuleExecutor[LogicalPlan] with HiveTypeCoercion {
- // TODO: pass this in as a parameter.
- val fixedPoint = FixedPoint(100)
- val batches: Seq[Batch] = Seq(
- Batch("MultiInstanceRelations", Once,
- NewRelationInstances),
- Batch("CaseInsensitiveAttributeReferences", Once,
- (if (caseSensitive) Nil else LowercaseAttributeReferences :: Nil) : _*),
- Batch("Resolution", fixedPoint,
- ResolveReferences ::
- ResolveRelations ::
- NewRelationInstances ::
- ImplicitGenerate ::
- StarExpansion ::
- ResolveFunctions ::
- GlobalAggregates ::
- typeCoercionRules :_*)
- )
首先是第一个batch里的NewRelationInstance这条Rule,他的作用就是避免一个逻辑计划上同一个实例出现多次,如果出现就生成一个新的plan,保证每个表达式id都唯一。
- /**
- * If any MultiInstanceRelation appears more than once in the query plan then the plan is updated so
- * that each instance has unique expression ids for the attributes produced.
- */
- object NewRelationInstances extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = {
- val localRelations = plan collect { case l: MultiInstanceRelation => l} // 这一步是搜集所有的多实例关系
- val multiAppearance = localRelations
- .groupBy(identity[MultiInstanceRelation])
- .filter { case (_, ls) => ls.size > 1 }
- .map(_._1)
- .toSet // 这一步是做过滤
- plan transform { // 这一步是把原来plan里的多实例关系,凡是出现多个,就变成一个新的单一实例
- case l: MultiInstanceRelation if multiAppearance contains l => l.newInstance
- }
- }
- }
LogicalPlan本身是TreeNode的子类,TreeNode具备collect等一些scala collection操作的能力,这个例子里第一步搜集的过程中体现了collect能力。
TreeNode是Catalyst里的重要基础类,后面有小节会具体讲。第二个batch是大小写相关的,如果对大小写不敏感,那么就执行LowercaseAttributeReferences这条Rule,会把所有的属性都变成小写
- /**
- * Makes attribute naming case insensitive by turning all UnresolvedAttributes to lowercase.
- */
- object LowercaseAttributeReferences extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case UnresolvedRelation(databaseName, name, alias) => // 第一类:未确定的关系
- UnresolvedRelation(databaseName, name, alias.map(_.toLowerCase))
- case Subquery(alias, child) => Subquery(alias.toLowerCase, child) // 第二类:子查询
- case q: LogicalPlan => q transformExpressions { // 第三类: 其他类型
- case s: Star => s.copy(table = s.table.map(_.toLowerCase)) // 指的是 * 号
- case UnresolvedAttribute(name) => UnresolvedAttribute(name.toLowerCase) // 未确定的属性
- case Alias(c, name) => Alias(c, name.toLowerCase)() // 别名
- }
- }
- }
transform,transformExpressions是TreeNode提供的方法,用于前序遍历树(pre-order)。
从这个处理可以看到logicalPlan里面包含的种类。后续Expression这一块具体还要展开介绍。
Alias的一点注释:
- /**
- * Used to assign a new name to a computation.
- * For example the SQL expression "1 + 1 AS a" could be represented as follows:
- * Alias(Add(Literal(1), Literal(1), "a")()
- *
Resulotion是第三类batch,定义的结束条件是循环100次。下面是我加的注释,大致介绍Rule的作用,并挑选几个Rule的实现介绍。
- Batch("Resolution", fixedPoint,
- ResolveReferences :: // 确定属性
- ResolveRelations :: // 确定关系(从catalog里)
- NewRelationInstances :: // 去掉同一个实例出现多次的情况
- ImplicitGenerate :: // 把包含Generator且只有一条的表达式转化成Generate操作
- StarExpansion :: // 扩张 *
- ResolveFunctions :: // 确定方法(从FunctionRegistry里)
- GlobalAggregates :: // 把包含Aggregate的表达式转化成Aggregate操作
- typeCoercionRules :_*) // 来自于HiveTypeCoercion,主要针对Hive语法做强制转换,包含多种规则
用post-order遍历树,把未确定的属性确定下来。如果没有做成功,未确定的属性依然会留下来,留给下一次迭代的时候再确定。
- /**
- * Replaces [[UnresolvedAttribute]]s with concrete
- * [[expressions.AttributeReference AttributeReferences]] from a logical plan node's children.
- */
- object ResolveReferences extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
- case q: LogicalPlan if q.childrenResolved =>
- logger.trace(s"Attempting to resolve ${q.simpleString}")
- q transformExpressions {
- case u @ UnresolvedAttribute(name) =>
- // Leave unchanged if resolution fails. Hopefully will be resolved next round.
- val result = q.resolve(name).getOrElse(u)
- logger.debug(s"Resolving $u to $result")
- result
- }
- }
- }
确定是通过LogicalPlan的resolve方法做的。这个具体在LogicalPlan里介绍,resolve方法是LogicalPlan的唯一且重要方法。
从catalog里查找关系
- /**
- * Replaces [[UnresolvedRelation]]s with concrete relations from the catalog.
- */
- object ResolveRelations extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case UnresolvedRelation(databaseName, name, alias) =>
- catalog.lookupRelation(databaseName, name, alias)
- }
- }
Generator是表达式的一种,根据一种inputrow产生0个或多个rows。
- /**
- * When a SELECT clause has only a single expression and that expression is a
- * [[catalyst.expressions.Generator Generator]] we convert the
- * [[catalyst.plans.logical.Project Project]] to a [[catalyst.plans.logical.Generate Generate]].
- */
- object ImplicitGenerate extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case Project(Seq(Alias(g: Generator, _)), child) =>
- Generate(g, join = false, outer = false, None, child)
- }
- }
确定方法类似确定关系。
- /**
- * Replaces [[UnresolvedFunction]]s with concrete [[expressions.Expression Expressions]].
- */
- object ResolveFunctions extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case q: LogicalPlan =>
- q transformExpressions {
- case u @ UnresolvedFunction(name, children) if u.childrenResolved =>
- registry.lookupFunction(name, children)
- }
- }
- }
换针对Hive语法做强制转换,规则如下
- trait HiveTypeCoercion {
- val typeCoercionRules = List(PropagateTypes, ConvertNaNs, WidenTypes, PromoteStrings, BooleanComparisons, BooleanCasts, StringToIntegralCasts, FunctionArgumentConversion)
举个简单的例子来看下表达式的使用和替换:
- /**
- * Converts string "NaN"s that are in binary operators with a NaN-able types (Float / Double) * to the appropriate numeric equivalent.
- */
- object ConvertNaNs extends Rule[LogicalPlan] {
- val stringNaN = Literal("NaN", StringType)
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case q: LogicalPlan => q transformExpressions {
- // Skip nodes who's children have not been resolved yet.
- case e if !e.childrenResolved => e
- /* Double Conversions */
- case b: BinaryExpression if b.left == stringNaN && b.right.dataType == DoubleType =>
- b.makeCopy(Array(b.right, Literal(Double.NaN)))
- case b: BinaryExpression if b.left.dataType == DoubleType && b.right == stringNaN =>
- b.makeCopy(Array(Literal(Double.NaN), b.left))
- case b: BinaryExpression if b.left == stringNaN && b.right == stringNaN =>
- b.makeCopy(Array(Literal(Double.NaN), b.left))
- /* Float Conversions */
- case b: BinaryExpression if b.left == stringNaN && b.right.dataType == FloatType =>
- b.makeCopy(Array(b.right, Literal(Float.NaN)))
- case b: BinaryExpression if b.left.dataType == FloatType && b.right == stringNaN =>
- b.makeCopy(Array(Literal(Float.NaN), b.left))
- case b: BinaryExpression if b.left == stringNaN && b.right == stringNaN =>
- b.makeCopy(Array(Literal(Float.NaN), b.left))
- }
- }
- }
Optimizer
Optimizer用于把analyzedplan转化成为optimized plan。目前Catalyst的optimizer包下就这一个类,SQLContext也是直接使用的这个类。
同样,我们看一下里面包括了哪些处理过程:
- object Optimizer extends RuleExecutor[LogicalPlan] {
- val batches =
- Batch("Subqueries", Once,
- EliminateSubqueries) ::
- Batch("ConstantFolding", Once,
- ConstantFolding,
- BooleanSimplification,
- SimplifyCasts) ::
- Batch("Filter Pushdown", Once,
- EliminateSubqueries,
- CombineFilters,
- PushPredicateThroughProject,
- PushPredicateThroughInnerJoin) :: Nil
- }
和子查询相关的一批规则,包含一条消除子查询的规则:EliminateSubqueries
- /**
- * Removes [[catalyst.plans.logical.Subquery Subquery]] operators from the plan. Subqueries are
- * only required to provide scoping information for attributes and can be removed once analysis is
- * complete.
- */
- object EliminateSubqueries extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case Subquery(_, child) => child // 处理方式是凡是带child的,都用child替换自己
- }
- }
注释提到,过了analysis这一步之后,子查询就可以移除了。
第二批规则,常量折叠。
- Batch("ConstantFolding", Once,
- ConstantFolding, // 常量折叠
- BooleanSimplification, // 提早短路掉布尔表达式
- SimplifyCasts) // 去掉多余的Cast操作
- /**
- * Replaces [[catalyst.expressions.Expression Expressions]] that can be statically evaluated with
- * equivalent [[catalyst.expressions.Literal Literal]] values.
- */
- object ConstantFolding extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case q: LogicalPlan => q transformExpressionsDown {
- // Skip redundant folding of literals.
- case l: Literal => l
- case e if e.foldable => Literal(e.apply(null), e.dataType)
- }
- }
- }
这里不得不提一下foldable字段在Expression类里的定义:
- /**
- * Returns true when an expression is a candidate for static evaluation before the query is
- * executed.
- *
- * The following conditions are used to determine suitability for constant folding:
- * - A [[expressions.Coalesce Coalesce]] is foldable if all of its children are foldable
- * - A [[expressions.BinaryExpression BinaryExpression]] is foldable if its both left and right
- * child are foldable
- * - A [[expressions.Not Not]], [[expressions.IsNull IsNull]], or
- * [[expressions.IsNotNull IsNotNull]] is foldable if its child is foldable.
- * - A [[expressions.Literal]] is foldable.
- * - A [[expressions.Cast Cast]] or [[expressions.UnaryMinus UnaryMinus]] is foldable if its
- * child is foldable.
- */
- // TODO: Supporting more foldable expressions. For example, deterministic Hive UDFs.
- def foldable: Boolean = false
第二种规则也好理解,简化布尔表达式。也就是早早地给表达式做一个短路判断。
- /**
- * Simplifies boolean expressions where the answer can be determined without evaluating both sides.
- * Note that this rule can eliminate expressions that might otherwise have been evaluated and thus
- * is only safe when evaluations of expressions does not result in side effects.
- */
- object BooleanSimplification extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transform {
- case q: LogicalPlan => q transformExpressionsUp {
- case and @ And(left, right) =>
- (left, right) match {
- case (Literal(true, BooleanType), r) => r
- case (l, Literal(true, BooleanType)) => l
- case (Literal(false, BooleanType), _) => Literal(false)
- case (_, Literal(false, BooleanType)) => Literal(false)
- case (_, _) => and
- }
- case or @ Or(left, right) =>
- (left, right) match {
- case (Literal(true, BooleanType), _) => Literal(true)
- case (_, Literal(true, BooleanType)) => Literal(true)
- case (Literal(false, BooleanType), r) => r
- case (l, Literal(false, BooleanType)) => l
- case (_, _) => or
- }
- }
- }
- }
把Cast操作全部移走。
- /**
- * Removes [[catalyst.expressions.Cast Casts]] that are unnecessary because the input is already
- * the correct type.
- */
- object SimplifyCasts extends Rule[LogicalPlan] {
- def apply(plan: LogicalPlan): LogicalPlan = plan transformAllExpressions {
- case Cast(e, dataType) if e.dataType == dataType => e
- }
- }
一批 过滤下推 规则,
- Batch("Filter Pushdown", Once,
- EliminateSubqueries, // 消除子查询
- CombineFilters, // 过滤操作取合集
- PushPredicateThroughProject, // 为映射操作下推谓词
- PushPredicateThroughInnerJoin) // 为inner join下推谓词
具体不一一列举了。
SQLContext
- /**
- * Prepares a planned SparkPlan for execution by binding references to specific ordinals, and
- * inserting shuffle operations as needed.
- */
- @transient
- protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] {
- val batches =
- Batch("Add exchange", Once, AddExchange) ::
- Batch("Prepare Expressions", Once, new BindReferences[SparkPlan]) :: Nil
- }
TreeNode
TreeNode Library支持的三个特性:
· Scala collection like methods (foreach, map, flatMap, collect, etc)
· transform accepts a partial function that is used to generate a newtree.
· debugging support pretty printing, easy splicing of trees, etc.
Collection操作能力
偏函数
全局唯一id
- object TreeNode {
- private val currentId = new java.util.concurrent.atomic.AtomicLong
- protected def nextId() = currentId.getAndIncrement()
- }
几种节点
- /**
- * A [[TreeNode]] that has two children, [[left]] and [[right]].
- */
- trait BinaryNode[BaseType <: TreeNode[BaseType]] {
- def left: BaseType
- def right: BaseType
- def children = Seq(left, right)
- }
- /**
- * A [[TreeNode]] with no children.
- */
- trait LeafNode[BaseType <: TreeNode[BaseType]] {
- def children = Nil
- }
- /**
- * A [[TreeNode]] with a single [[child]].
- */
- trait UnaryNode[BaseType <: TreeNode[BaseType]] {
- def child: BaseType
- def children = child :: Nil
- }
每个node唯一id,导致在比较的时候,不同分支上长得一样结构的node也不相同,比较如下:
- def sameInstance(other: TreeNode[_]): Boolean = {
- this.id == other.id
- }
- def fastEquals(other: TreeNode[_]): Boolean = {
- sameInstance(other) || this == other
- }
- foreach的时候,先做自己,再把孩子们做一遍
- def foreach(f: BaseType => Unit): Unit = {
- f(this)
- children.foreach(_.foreach(f))
- }
map的时候是按前序对每个节点都做一次处理
- def map[A](f: BaseType => A): Seq[A] = {
- val ret = new collection.mutable.ArrayBuffer[A]()
- foreach(ret += f(_))
- ret
- }
其他的很多变化都类似,接收的是函数或偏函数,把他们作用到匹配的节点上去执行
变化总共有这些,按类别分:
map, flatMap, collect,
mapChildren, withNewChildren,
transform, transformDown, transformChildrenDown 前序
transformUp, transformChildrenUp 后序
基本上就这些,其实就是提供对这棵树及其子节点的顺序遍历和处理能力
Plan
QueryPlan的继承结构
QueryPlan提供了三个东西,
Ø 其一是定义了output,是对外输出的一个属性序列
def output:Seq[Attribute]
Ø 其二是借用TreeNode的那套transform方法,实现了一套transformExpression方法,用途是把partialfunction遍历到各个子节点上。
Ø 其三是一个expressions方法,返回Seq[expression],用于搜集本query里所有的表达式。
QueryPlan在Catalyst里的实现是LogicalPlan,在SQL组件里的实现是SparkPlan,前者主要要被处理、分析和优化,后者是真正被处理执行的,下面简单介绍两者。
Logical Plan
在QueryPlan上增加的几个属性:
1. references 用于生成output属性列表的参考属性列表
def references: Set[Attribute]
2. lazy val inputSet: Set[Attribute] = children.flatMap(_.output).toSet
3. 自己及children是否resolved
4. resolve方法,重要,看起来费劲
- def resolve(name: String): Option[NamedExpression] = {
- val parts = name.split("\\.")
- // Collect all attributes that are output by this nodes children where either the first part
- // matches the name or where the first part matches the scope and the second part matches the
- // name. Return these matches along with any remaining parts, which represent dotted access to
- // struct fields.
- val options = children.flatMap(_.output).flatMap { option =>
- // If the first part of the desired name matches a qualifier for this possible match, drop it.
- val remainingParts = if (option.qualifiers contains parts.head) parts.drop(1) else parts
- if (option.name == remainingParts.head) (option, remainingParts.tail.toList) :: Nil else Nil
- }
- options.distinct match {
- case (a, Nil) :: Nil => Some(a) // One match, no nested fields, use it.
- // One match, but we also need to extract the requested nested field.
- case (a, nestedFields) :: Nil =>
- a.dataType match {
- case StructType(fields) =>
- Some(Alias(nestedFields.foldLeft(a: Expression)(GetField), nestedFields.last)())
- case _ => None // Don't know how to resolve these field references
- }
- case Nil => None // No matches.
- case ambiguousReferences =>
- throw new TreeNodeException(
- this, s"Ambiguous references to $name: ${ambiguousReferences.mkString(",")}")
- }
- }
三种抽象子类:
- /**
- * A logical plan node with no children.
- */
- abstract class LeafNode extends LogicalPlan with trees.LeafNode[LogicalPlan] {
- self: Product =>
- // Leaf nodes by definition cannot reference any input attributes.
- def references = Set.empty
- }
- /**
- * A logical plan node with single child.
- */
- abstract class UnaryNode extends LogicalPlan with trees.UnaryNode[LogicalPlan] {
- self: Product =>
- }
- /**
- * A logical plan node with a left and right child.
- */
- abstract class BinaryNode extends LogicalPlan with trees.BinaryNode[LogicalPlan] {
- self: Product =>
- }
分别看LogicalPlan的三种Node的实现结构:LeafNode,UnaryNode,BinaryNode
- /**
- * A logical node that represents a non-query command to be executed by the system. For example,
- * commands can be used by parsers to represent DDL operations.
- */
- abstract class Command extends LeafNode {
- self: Product =>
- def output = Seq.empty
- }
- /**
- * Returned for commands supported by a given parser, but not catalyst. In general these are DDL
- * commands that are passed directly to another system.
- */
- case class NativeCommand(cmd: String) extends Command
- /**
- * Returned by a parser when the users only wants to see what query plan would be executed, without
- * actually performing the execution.
- */
- case class ExplainCommand(plan: LogicalPlan) extends Command
- case object NoRelation extends LeafNode {
- def output = Nil
- }
Spark Plan
SparkPlan类继承结构如下图:
在SQL模块的execution package的basicOperator类里,有许多SparkPlan的实现,包括
Project,Filter,Sample,Union,StopAfter,TopK,Sort,ExsitingRdd
这些实现和Catalyst的basicOperator类里有很多重了,区别在于,SparkPlan是QueryPlan的实现,同logical plan不同的是,SparkPlan会被Spark实现的Strategy真正执行,所以SQL模块里的basicOperator内的这些caseclass,比Catalyst多了execute()方法
具体Spark策略的实现参考下一小节。
Planning
Query Planner
QueryPlanner的职责是把逻辑执行计划转化成为物理执行计划,具备一系列Strategy的实现。
- abstract class QueryPlanner[PhysicalPlan <: TreeNode[PhysicalPlan]] {
- /** A list of execution strategies that can be used by the planner */
- def strategies: Seq[Strategy]
- /**
- * Given a [[plans.logical.LogicalPlan LogicalPlan]], returns a list of `PhysicalPlan`s that can
- * be used for execution. If this strategy does not apply to the give logical operation then an
- * empty list should be returned.
- */
- abstract protected class Strategy extends Logging {
- def apply(plan: LogicalPlan): Seq[PhysicalPlan]
- }
- /**
- * Returns a placeholder for a physical plan that executes `plan`. This placeholder will be
- * filled in automatically by the QueryPlanner using the other execution strategies that are
- * available.
- */
- protected def planLater(plan: LogicalPlan) = apply(plan).next()
- def apply(plan: LogicalPlan): Iterator[PhysicalPlan] = {
- // Obviously a lot to do here still...
- val iter = strategies.view.flatMap(_(plan)).toIterator
- assert(iter.hasNext, s"No plan for $plan")
- iter
- }
- }
QueryPlanner impl
目前的实现是SparkStrategies
在SQLContext里的使用是SparkPlanner:
- protected[sql] class SparkPlanner extends SparkStrategies {
- val sparkContext = self.sparkContext
- val strategies: Seq[Strategy] =
- TopK ::
- PartialAggregation ::
- SparkEquiInnerJoin ::
- BasicOperators ::
- CartesianProduct ::
- BroadcastNestedLoopJoin :: Nil
- }
在HiveContext里的使用是带了hive策略的SparkPlanner:
- val hivePlanner = new SparkPlanner with HiveStrategies {
- val hiveContext = self
- override val strategies: Seq[Strategy] = Seq(
- TopK,
- ColumnPrunings,
- PartitionPrunings,
- HiveTableScans,
- DataSinks,
- Scripts,
- PartialAggregation,
- SparkEquiInnerJoin,
- BasicOperators,
- CartesianProduct,
- BroadcastNestedLoopJoin
- )
- }
Strategy & impl
Expression
Expression几个属性:
1. 带DataType,并且自带一些inline方法帮助一些dataType的转换
2. 带reference,reference是Seq[Attribute],Attribute是NamedExpression子类。
3. foldable ,即静态可以直接执行的表达式
Expression里只有Literal可折叠,Literal是LeafExpression,根据dataType生成不同类型表达式
- object Literal {
- def apply(v: Any): Literal = v match {
- case i: Int => Literal(i, IntegerType)
- case l: Long => Literal(l, LongType)
- case d: Double => Literal(d, DoubleType)
- case f: Float => Literal(f, FloatType)
- case b: Byte => Literal(b, ByteType)
- case s: Short => Literal(s, ShortType)
- case s: String => Literal(s, StringType)
- case b: Boolean => Literal(b, BooleanType)
- case null => Literal(null, NullType)
- }
- }
- case class Literal(value: Any, dataType: DataType) extends LeafExpression {
- override def foldable = true
- def nullable = value == null
- def references = Set.empty
- override def toString = if (value != null) value.toString else "null"
- type EvaluatedType = Any
- override def apply(input: Row):Any = value // 执行这个叶子表达式的话就是返回value值
- }
4. resolved 具体关心children是否都resolved。
childeren是TreeNode里的概念,在TreeNode里是一个Seq[BaseType],而BaseType是TreeNode[T]里的范型。在Expression这里,即TreeNode[Expression],BaseType就是Expression。
Expression继承结构
抽象子类如下:
- abstract class BinaryExpression extends Expression with trees.BinaryNode[Expression] {
- self: Product =>
- def symbol: String
- override def foldable = left.foldable && right.foldable
- def references = left.references ++ right.references
- override def toString = s"($left $symbol $right)"
- }
- abstract class LeafExpression extends Expression with trees.LeafNode[Expression] {
- self: Product =>
- }
- abstract class UnaryExpression extends Expression with trees.UnaryNode[Expression] {
- self: Product =>
- def references = child.references
- }
Expression impl
SchemaRDD
SchemaRDD是一个RDD[Row],Row在Catalyst对应的是Table里的一行,定义是
- trait Row extends Seq[Any] with Serializable
SchemaRDD就两部分实现,还有几个SQLContext的方法调用
一是RDD的Function的实现
- // =========================================================================================
- // RDD functions: Copy the interal row representation so we present immutable data to users.
- // =========================================================================================
- override def compute(split: Partition, context: TaskContext): Iterator[Row] =
- firstParent[Row].compute(split, context).map(_.copy())
- override def getPartitions: Array[Partition] = firstParent[Row].partitions
- override protected def getDependencies: Seq[Dependency[_]] =
- List(new OneToOneDependency(queryExecution.toRdd)) // 该SchemaRDD与优化后的RDD是窄依赖
二是DSL function的实现,如
- def select(exprs: NamedExpression*): SchemaRDD =
- new SchemaRDD(sqlContext, Project(exprs, logicalPlan))
每次DSL的操作会转化成为新的SchemaRDD,
SchemaRDD的DSL操作与Catalyst组件提供的操作的对应关系为
DSL Operator的实现都依赖Catalyst的basicOperator,basicOperator里的操作都是LogicalPlan的继承类,主要分两类,一元UnaryNode和二元BinaryNode操作。而UnaryNode和BinaryNode都是TreeNode的实现,TreeNode里还有一种就是LeafNode。
basicOperator的各种实现都是caseclass,都是LogicalPlan,不具备execute能力
Hive
Hive Context
HiveContext是Spark SQL执行引擎之一,将hive数据结合到Spark环境中,读取的配置在hive-site.xml里指定。
继承关系
HiveContext里的sql parser使用的是HiveQl,
执行hql的时候,runHive方法接收cmd,且设置了最大返回行数
- protected def runHive(cmd: String, maxRows: Int = 1000): Seq[String]
调用的方法是hive里的类,返回结果存在java的ArrayList里
错误日志会记录在outputBuffer里,用于打印输出
逻辑执行计划的几个步骤仍然类似SqlContext,因为QueryExecution也继承了过来
- abstract class QueryExecution extends super.QueryExecution {
区别在于使用的实例不一样,且toRdd操作逻辑不一样
Hive Catalog
使用HiveMetastoreCatalog存表信息
HiveMetastoreCatalog内,通过HiveContext的hiveconf,创建了hiveclient,所以可以进行getTable,getPartition,createTable操作
HiveMetastoreCatalog内的MetastoreRelation,继承结构如下
通过hive的接口创建了Table,Partition,TableDesc,并带一个隐式转换HiveMetastoreTypes类,因为在把Schema里的Field转成Attribute的过程中,借助HiveMetastoreTypes的toDataType把Catalyst支持的DataType parse成hive支持的类型
Hive QL
Hive UDF
- object HiveFunctionRegistry
- extends analysis.FunctionRegistry with HiveFunctionFactory with HiveInspectors {
继承FunctionRegistry,实现的是lookupFunction方法
HiveFunctionFactory主要做反射的事情,以及把hive的类型转化成为catalyst type
包括
- def getFunctionInfo(name: String) = FunctionRegistry.getFunctionInfo(name)
- def getFunctionClass(name: String) = getFunctionInfo(name).getFunctionClass
- def createFunction[UDFType](name: String) =
- getFunctionClass(name).newInstance.asInstanceOf[UDFType]
HiveInspectors是Catalyst DataType和Hive ObjectInspector的转化
Java类到Catalyst dataType的转化
- def javaClassToDataType(clz: Class[_]): DataType = clz match
Hive Strategy
- val hivePlanner = new SparkPlanner with HiveStrategies {
- val hiveContext = self
- override val strategies: Seq[Strategy] = Seq(
- TopK,
- ColumnPrunings,
- PartitionPrunings,
- HiveTableScans,
- DataSinks,
- Scripts,
- PartialAggregation,
- SparkEquiInnerJoin,
- BasicOperators,
- CartesianProduct,
- BroadcastNestedLoopJoin
- )
- }