【HDU - 6558】The Moon(概率dp)

文章介绍了初学者如何理解并应用概率动态规划(DP)解决一个问题,特别是涉及中奖率的情况。文中通过一个例子展示了概率DP的解题过程,包括题意解析、思路阐述、代码实现,并总结了学习概率DP的体会,鼓励遇到未知问题时主动学习。

ps:初学概率dp,所以 就算是板子也 是看了非常久,好在最后还是学会了qwq…


题意

在这里插入图片描述

思路

概率dp通常为从能够得到的状态去进行转移,在q为100%的时候,我们能够知道赢的概率为 p,那么赢的期望就是1/p,
那么往前转移状态,设dp[i]为机会率为i的时候的期望,那么
机会率为i时,一共有三种情况:

1.玩家赢了并且中奖了
2.玩家赢了但是没中奖
3.玩家没赢

对应的三种概率为

1.pq
2.p
(1-q)
3.(1-p)

因为玩家赢了并且中奖了是直接结束游戏没有后续的状态,所以对于机会率为i的时候
赢的期望=1(这一把赢了并且中奖了)+p*(1-q)*dp[q+2](玩家赢了但是没中奖) +(1-p)*dp[q+1.5](玩家没赢) ;
但是因为1.5是小数,所以对于dp[i]扩大两倍即可(最后记得用浮点运算)。

代码


#include<cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include<vector>
#include<queue>
#include<map>
#define sc_int(x) scanf("%d", &x)
#define sc_ll(x) scanf("%lld", &x)
#define pr_ll(x) printf("%lld", x)
#define pr_ll_n(x) printf("%lld\n", x)
#define pr_int_n(x) printf("%d\n", x)
#define ll long long 
using namespace std;

const int N=1000000+100;
int n ,m,h;
int s[N];

double dp[N];


void slove( int t )
{

	double p;
	cin>>p;//中奖率
	p/=100;
	memset(dp,0,sizeof dp);
	dp[200]=1/p;//赢的机会为100的时候
	for(int i =199;i>=4;i--)
	dp[i]=1.0 + 1.0*(1-p)*dp[min(200,i+3)] +  1.0*p*(1-i*1.0/200)*dp[min(200,i+4)];

	printf("Case %d: %.10lf\n",t,dp[4]);

}

int main()
{
	int t;
	sc_int(t);
	for(int i =1;i<=t;i++)
	slove(i);


	return 0;
}

总结

因为dp没见过概率dp的题,所以初见的时候感觉很不知所措,以后就尽量看到不会的就去学学吧~

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值