【数据挖掘】密度聚类DBSCAN讲解及实战应用(图文解释 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

基于密度的聚类

基于划分和聚类和基于层次的聚类往往只能发现凸型的聚类簇,为了更好的发现任意形状的聚类簇,提出了基于密度的聚类算法

算法原理

基于密度的聚类算法的主要思想是:只要邻近区域的密度(对象或数据点的数目)超过某个阈值 ,就把它加到与之相近的聚类中。也就是说,对给定类中的每个数据点,在一个给定范围的区域中必须至少包含某个数目的点

基于密度的聚类算法代表算法有:DBSCAN算法、OPTICS算法及DENCLUE算法等

DBSCAN算法涉及2个参数5个定义

2个参数:

Eps: 邻域最大半径

MinPts: 在 Eps 邻域中的最少点数

五个定义如下图所示

 定义1(Eps邻域)  给定一个对象 p ,p 的Eps 邻域 NEps(p)定义为以  p 为核心,以Eps为半径的d 维超球体区域,即: 其中,D为d维实空间上的数据集, dist ( p, q)表示D中的2个对象p和q之间的距离。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

showswoller

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值