Linix fork系统调用

本文详细解析了Linux系统中fork()函数的使用方法,包括其返回值的含义、创建子进程的过程以及父子进程之间的区别。通过实例代码演示了fork()函数在父进程和子进程中的不同行为,帮助开发者更好地理解和应用这一核心进程控制API。
Linux系统进程控制编程--fork()系统调用

Linux系统进程控制编程----fork函数的使用

#include <unistd.h>

pid_t fork(void);  

fock函数调用一次却返回两次;向父进程返回子进程的ID,向子进程中返回0,这是因为父进程可能存在很多过子进程,所以必须通过这个返回的子进程ID来跟踪子进程,而子进程只有一个父进程,他的ID可以通过getppid取得。

下面程序创建一个子进程:

/******************************************************************************
** Name:fork.c
** This program is used to show the usage of fork() .
** Author:zieckey,(zieckey@yahoo.com.cn)
** Date:2007/9/29 21:33
** All rights reserved!
******************************************************************************/
#include <unistd.h>
#include <stdio.h>
int main(void)
{
pid_t pid;
int count=0;
 pid = fork();

printf( "This is first time, pid = %d\n", pid );
printf( "This is second time, pid = %d\n", pid );
count++;
printf( "count = %d\n", count );

if ( pid>0 )
{
printf( "This is the parent process,the child has the pid:%d\n", pid );
}
else if ( !pid )
{
printf( "This is the child process.\n");
}
else     //当fork掉用失败的时候(内存不足或者是用户的最大进程数已到)fork返回-1

{
printf( "fork failed.\n" );
}

printf( "This is third time, pid = %d\n", pid );
printf( "This is fouth time, pid = %d\n", pid );

return 0;
}

[root@localhost src]# gcc fork.c

[root@localhost src]# ./a.out

This is first time, pid = 0

This is second time, pid = 0

count = 1

This is the child process.

This is third time, pid = 0

This is fouth time, pid = 0

This is first time, pid = 3512

This is second time, pid = 3512

count = 1

This is the parent process,the child has the pid:3512

This is third time, pid = 3512

This is fouth time, pid = 3512

#include <unistd.h>
#include <stdio.h>
int main(void)
{
pid_t pid;
int count=0;
 pid = fork();

printf( "Now, the pid returned by calling fork() is %d\n", pid );

if ( pid>0 )
{
printf( "This is the parent process,the child has the pid:%d\n", pid );
printf( "In the parent process,count = %d\n", count );
}
else if ( !pid )
{
printf( "This is the child process.\n");
printf( "Do your own things here.\n" );
count ++;
printf( "In the child process, count = %d\n", count );
}
else
{
printf( "fork failed.\n" );
}

return 0;
}

[root@localhost src]# gcc fork.c

[root@localhost src]# ./a.out

Now, the pid returned by calling fork() is 0

This is the child process.

Do your own things here.

In the child process, count = 1

Now, the pid returned by calling fork() is 4139

This is the parent process,the child has the pid:4139

In the parent process,count = 0

[root@localhost src]#

现在来解释上面提出的问题。

The new process created by fork is called the child process. This function is called once but returns twice. The only difference in the returns is that the return value in the child is 0, whereas the return value in the parent is the process ID of the new child. The reason the child's process ID is returned to the parent is that a process can have more than one child, and there is no function that allows a process to obtain the process IDs of its children. The reason fork returns 0 to the child is that a process can have only a single parent, and the child can always call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so it's not possible for 0 to be the process ID of a child.)

被fork创建的新进程叫做自进程。fork函数被调用一次,却两次返回。返回值唯一的区别是在子进程中返回0,而在父进程中返回子进程的pid。在父进程中要返回子进程的pid的原因是父进程可能有不止一个子进程,而一个进程又没有任何函数可以得到他的子进程的pid。

Both the child and the parent continue executing with the instruction that follows the call to fork. The child is a copy of the parent. For example, the child gets a copy of the parent's data space, heap, and stack. Note that this is a copy for the child; the parent and the child do not share these portions of memory. The parent and the child share the text segment (Section 7.6).

子进程和父进程都执行在fork函数调用之后的代码,子进程是父进程的一个拷贝。例如,父进程的数

据空间、堆栈空间都会给子进程一个拷贝,而不是共享这些内存。

Current implementations don't perform a complete copy of the parent's data, stack, and heap, since a fork is often followed by an exec. Instead, a technique called copy-on-write (COW) is used. These regions are shared by the parent and the child and have their protection changed by the kernel to read-only. If either process tries to modify these regions, the kernel then makes a copy of that piece of memory only, typically a "page" in a virtual memory system. Section 9.2 of Bach [1986] and Sections 5.6 and 5.7 of McKusick et al. [1996] provide more detail on this feature.

我们来给出详细的注释:
#include <unistd.h>
#include <stdio.h>
int main(void)
{
pid_t pid;
int count=0;
/*此处,执行fork调用,创建了一个新的进程,
 这个进程共享父进程的数据和堆栈空间等,这之后的代码指令为子进程创建了一个拷贝。
 fock 调用是一个复制进程,fock 不象线程需提供一个函数做为入口,
 fock调用后,新进程的入口就在 fock的下一条语句。*/
 pid = fork();

/*此处的pid的值,可以说明fork调用后,目前执行的是那父进程还是子进程*/
printf( "Now, the pid returned by calling fork() is %d\n", pid );

if ( pid>0 )
{
/*当fork在子进程中返回后,fork调用又向父进程中返回子进程的pid,
  如是该段代码被执行,但是注意的事,count仍然为0,
  因为父进程中的count始终没有被重新赋值,
  这里就可以看出子进程的数据和堆栈空间和父进程是独立的,而不是共享数据*/
printf( "This is the parent process,the child has the pid:%d\n", pid );
printf( "In the parent process,count = %d\n", count );
}
else if ( !pid )
{ /*在子进程中对count进行自加1的操作,但是并没有影响到父进程中的count值,父进程中的count
值仍然为0*/
printf( "This is the child process.\n");
printf( "Do your own things here.\n" );
count++;
printf( "In the child process, count = %d\n", count );
}
else
{
printf( "fork failed.\n" );
}

return 0;
}

补充及拓展:

当一个进程调用了fork以后,系统会创建一个子进程。这个子进程和父进程不同的地方只有他的进程ID和父进程ID,其他的都是一样.就象符进程克隆(clone)自己一样。当然创建两个一模一样的进程是没有意义的。为了区分父进程和子进程,我们必须跟踪fork的返回值。 ,否则fork的返回值有重要的作用。对于父进程fork返回子进程的ID,而对于fork子进程返回0。我们就是根据这个返回值来区分父子进程的。父进程为什么要创建子进程呢?前面我们已经说过了Linux是一个多用户操作系统,在同一时间会有许多的用户在争夺系统的资源。

有时进程为了早一点完成任务就创建子进程来争夺资源。一旦子进程被创建,父子进程一起从fork处继续执行,相互竞争系统的资源。有时候我们希望子进程继续执行,而父进程阻塞直到子进程完成任务。这个时候我们可以调用wait或者waitpid系统调用
标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值