Oracle 11gExtension Statistics and Expression Statistics

Oracle 11g 引入了多列统计信息和表达式统计信息来改进成本优化器的选择性估计,包括收集不同列组合及表达式的独立性和频率直方图等关键统计指标。

Overview Extended Statistics 
In this release, Oracle has introduced major new capabilities in statistics gathering, which are referred to as extended statistics, to make the optimizer statistics reflect the true selectivity of the data. There are two types of extended statistics: multi- column statistics, which involve collecting statistics for column groups, and expression statistics. Extended statistics include the statistics collected for both column groups and expressions and use the following new procedures: 
CREATE_EXTENDED_STATS function 
DROP_EXTENDED_STATS procedure 
SHOW_EXTENDED_STATS_NAME function 
Multicolumn Statistics (Column groups) 
The selectivity of a column is a crucial optimizer statistic, playing a key role in the execution plan that the cost optimizer creates for a SQL statement. Currently, Oracle collects statistics by computing the selectivity of each of a table’s columns separately, and ignores the relationship between the columns. However, the relationship between certain columns may be so strong that it can affect the combined selectivity of the two columns. In most cases, the optimizer assumes that the values of the different columns in a complex predicate are independent. Based on this assumption, the optimizer simply multiplies the selectivity of individual predicates to arrive at the selectivity of a conjunctive predicate, which usually leads to an underestimation of the selectivity. In Oracle Database 10g, when figuring out the selectivity of multiple predicates, the query optimizer took into account the correlation between related columns only under a limited set of circumstances, as I summarize here:

  • The optimizer used the number of distinct keys in an index to estimate selectivity provided all columns of a conjunctive predicate match all columns of a concatenated index key. In addition, the predicates must be equalities used in equijoins.
  • If you set DYNAMIC_SAMPLING to level 4, the optimizer used dynamic sampling to estimate the selectivity of predicates involving multiple columns from a table.Because the sampling size is quite small, the results are dubious in most cases.

With the exception of the two cases presented here, the optimizer always assumed that the values of all columns in a table that were used in a complex predicate were independent of each other. Based on this naïve assumption, the optimizer simply multiplied single column selectivity estimates to arrive at the selectivity of a conjunctive predicate involving multiple columns. The end result of this strategy was a severe underestimation of the real selectivity of those types of predicates in a SQL statement. Oracle Database 11g attempts to alleviate this major problem by letting you collect the following types of statistics on multiple columns in a table, which it refers to as a group of columns:

  • Number of distinct values
  • Density
  • Number of nulls
  • Frequency histograms

The idea behind the capturing of statistics for a group of columns as a single entity is to capture the underlying functional dependency between related columns in a table. The database collects the number of distinct values, the number of null values, frequency histograms, and density for groups of columns. Let’s use an example from the CUSTOMERS table in the SH schema to drive home this point. In this table, the two columns CUST_STATE_PROVINCE and COUNTRY_ID are strongly correlated. The CUST_STATE_PROVINCE column determines the value of the COUNTRY_ID column for a customer. The following query using California as the value for the CUST_STATE_PROVINCE column shows this:

SQL> select count(*)  from sh.customers 
     where cust_state_province = 'CA'; 
COUNT(*) 
---------- 
    3341 
The query returns the value 3341. That is, there are a total of 3341 customers in the customers table who are from the state of California. Of course, if you issue the following query, which asks how many customers are from the state of California and the U.S. (country_id=52790), you get the same result as before: 
SQL> select count(*)  from customers 
     where cust_state_province = 'CA' 
     and country_id=52790; 
COUNT(*) 
---------- 
    3341 
But it is clear that if you repeat this query for any COUNTRY_ID other than the U.S., the result would be, in all likelihood, zero because California is a state in the U.S. but not in the other countries. In cases such as these, it makes sense for the optimizer to rely not merely on the selectivity of the individual columns, but on the selectivity for the group of related columns as well. Oracle Database 11g lets you do precisely that— you can now gather statistics on related columns as a group, called a column group. The optimizer uses the statistics on column groups to account for the correlation between two columns. If, for example, your query has the predicates c1=1 and c2=1 and if you collect statistics on (c1, c2) as a single group, the optimizer will use the column group statistics for estimating the combined selectivity of the two predicates.

Manage extention statistics

Oracle creates column groups for related columns based on its analysis of the database workload. You can, however, create a column group yourself using the DBMS_STATS package.

-- Create a columnn group based on EMP(JOB,DEPTNO). 
SET SERVEROUTPUT ON 
DECLARE 
  l_cg_name VARCHAR2(30); 
BEGIN 
  l_cg_name := DBMS_STATS.create_extended_stats(ownname   => 'SCOTT', 
                                                tabname   => 'EMP', 
                                                extension => '(JOB,DEPTNO)'); 
  DBMS_OUTPUT.put_line('l_cg_name=' || l_cg_name); 
END; 

l_cg_name=SYS_STU3VG629OEYG6FN0EKTGV_HQ6 
PL/SQL procedure successfully completed. 
The column group name is returned using the SHOW_EXTENDED_STATS_NAME function. 
-- Display the name of the columnn group. 
SELECT DBMS_STATS.show_extended_stats_name(ownname   => 'SCOTT', 
                                           tabname   => 'EMP', 
                                           extension => '(JOB,DEPTNO)') AS ame 
FROM dual; 
CG_NAME 
------------------------------ 
SYS_STU3VG629OEYG6FN0EKTGV_HQ6 
 1 row selected. 
Manually created column groups can be deleted using the DROP_EXTENDED_STATS procedure. 
-- Drop the columnn group. 
BEGIN 
  dbms_stats.drop_extended_stats(ownname   => 'SCOTT', 
                                 tabname   => 'EMP', 
                                 extension => '(JOB,DEPTNO)'); 
END; 

PL/SQL procedure successfully completed. 
Setting the METHOD_OPT parameter to "FOR ALL COLUMNS SIZE AUTO" allows the GATHER_% procedures to gather statistics on all existing column groups for the specified object. 
BEGIN 
  DBMS_STATS.gather_table_stats( 
    'SCOTT', 
    'EMP', 
    method_opt => 'for all columns size auto'); 
END; 

Alternatively, set the METHOD_OPT parameter to "FOR COLUMNS (column-list)" and the group will automatically be created during the statistics gathering. 
BEGIN 
  DBMS_STATS.gather_table_stats( 
    'SCOTT', 
    'EMP', 
    method_opt => 'for columns (job,mgr)'); 
END; 

The [DBA|ALL|USER]_STAT_EXTENSIONS views display information about the multi-column statistics. 
COLUMN extension FORMAT A30 
SELECT extension_name, extension 
FROM   dba_stat_extensions 
WHERE  table_name = 'EMP'; 
EXTENSION_NAME                 EXTENSION 
------------------------------ ------------------------------ 
SYS_STU3VG629OEYG6FN0EKTGV_HQ6 ("JOB","DEPTNO") 
SYS_STULPA1A#B6YL4KQ59DQO3OADQ ("JOB","MGR") 
 2 rows selected. 
COLUMN col_group FORMAT A30 
SELECT e.extension col_group, 
       t.num_distinct, 
       t.histogram 
FROM   dba_stat_extensions e 
       JOIN dba_tab_col_statistics t ON e.extension_name=t.column_name 
AND    t.table_name = 'EMP'; 
COL_GROUP                      NUM_DISTINCT HISTOGRAM 
------------------------------ ------------ --------------- 
("JOB","DEPTNO")                          9 FREQUENCY 
("JOB","MGR")                             8 FREQUENCY 
2 rows selected.

Expression Statistics

In Oracle Database 10g, the optimizer can collect expression statistics on some types of expressions on columns, thus deriving more accurate selectivity estimates.This functionality applies only to certain special cases where a function preserves the data distribution characteristics of the original column, as is the case when you use an expression such as TO_NUMBER. In addition, the database in the previous release used dynamic sampling to get better estimates of built-in functions on columns. In Oracle Database 11g, the database uses expression statistics that include user-defined functions as well as function-based indexes. The new feature relies on the virtual column infrastructure to create expression statistics, that is, statistics on predicates involving expressions on columns.

The optimizer has no idea what the affect of applying a function to column has on the selectivity of the column. Using a similar method to multi-column statistics, we can gather expression statistics to provide more information. Expression statistics can be created explicitly using the CREATE_EXTENDED_STATS procedure, or implicitly by specifying the expression in the METHOD_OPT parameter of the GATHER_% procedures when gathering statistics. 
DECLARE 
  l_cg_name VARCHAR2(30); 
BEGIN 
  -- Explicitly created. 
  l_cg_name := DBMS_STATS.create_extended_stats(ownname   => 'SCOTT', 
                                                tabname   => 'EMP', 
                                                extension => '(LOWER(ENAME))'); 
  -- Implicitly created. 
  DBMS_STATS.gather_table_stats( 
    'SCOTT', 
    'EMP', 
    method_opt => 'for columns (upper(ename))'); 
END; 

Setting the METHOD_OPT parameter to "FOR ALL COLUMNS SIZE AUTO" allows the GATHER_% procedures to gather existing expression statistics. 
BEGIN 
  DBMS_STATS.gather_table_stats( 
    'SCOTT', 
    'EMP', 
    method_opt => 'for all columns size auto'); 
END; 

The [DBA|ALL|USER]_STAT_EXTENSIONS views display information about the expression statistics, as well as the multi-column statistics. 
COLUMN extension FORMAT A30 
SELECT extension_name, extension 
FROM   dba_stat_extensions 
WHERE  table_name = 'EMP'; 
EXTENSION_NAME                 EXTENSION 
------------------------------ ------------------------------ 
SYS_STU3VG629OEYG6FN0EKTGV_HQ6 ("JOB","DEPTNO") 
SYS_STULPA1A#B6YL4KQ59DQO3OADQ ("JOB","MGR") 
SYS_STU2JLSDWQAFJHQST7$QK81_YB (LOWER("ENAME")) 
SYS_STUOK75YSL165W#_X8GUYL0A1X (UPPER("ENAME")) 
4 rows selected. 
COLUMN col_group FORMAT A30 
SELECT e.extension col_group, 
       t.num_distinct, 
       t.histogram 
FROM   dba_stat_extensions e 
       JOIN dba_tab_col_statistics t ON e.extension_name=t.column_name 
AND    t.table_name = 'EMP'; 
COL_GROUP                      NUM_DISTINCT HISTOGRAM 
------------------------------ ------------ --------------- 
("JOB","DEPTNO")                          9 NONE 
("JOB","MGR")                             8 NONE 
(LOWER("ENAME"))                         14 NONE 
(UPPER("ENAME"))                         14 NONE 
4 rows selected. 
Expression statistics are dropped using the DROP_EXTENDED_STATS procedure. 
-- Drop the columnn group. 
BEGIN 
  dbms_stats.drop_extended_stats(ownname   => 'SCOTT', 
                                 tabname   => 'EMP', 
                                 extension => '(UPPER(ENAME))'); 
END; 

PL/SQL procedure successfully completed.

参 考至:http://www.oracle-base.com/articles/11g/statistics-collection- enhancements-11gr1.php 《McGraw.Hill.OCP.Oracle.Database.11g.New.Features.for.Administrators.Exam.Guide.Apr.2008》


出处:http://www.tuicool.com/articles/jUFvyy

### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了代码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的表现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值