Deployment Procces by Rowan Simpson

本文介绍了TradeMe网站从早期的简单开发环境到目前较为成熟的软件开发流程的变化。包括使用Visual Studio作为集成开发环境,采用SourceSafe进行源代码管理,并通过自建的Release Manager工具进行任务管理和版本发布。此外还描述了不同环境下的部署流程和团队如何通过轻量级的敏捷方法迭代改进。

This is Part II in a two-part series. Part I covers the Trade Me application architecture.

Tim’s second lot of questions are about our dev tools and process:

Q: Any third party tools in the software or the dev/management process?

Q: What source control software do you use, and how do you use it?

Q: How do you manage roll outs? Dev/Staging/Live?

Q: Do you use pair programming, or adopt any other methodologies from the agile world?

The answers to these questions are just a snapshot, capturing how we do things today (early in April, 2007).

I go far enough back to remember when our “development environment” was Jessi’s PC (Jessi at that stage was our entire Customer Service department!) Back then there was no source control as such, we all shared a single set of source files. To deploy a change we would simply copy the relevant ASP files directly onto the live web server and then quickly make the associated database changes.

Somehow it worked!

Ever since then we’ve been constantly tweaking the tools and processes we use, to accommodate a growing team and a growing site. As our application and environment has evolved and become more complex our tools and process have had to change also.

This change will continue, I’m sure. So, it will be interesting to come back to this post in another 8 years and see if the things I describe below sound as ridiculous then as the things I described above do now.

Also, the standard disclaimer applies to these ideas: what makes sense for us, in our environment and with our site, may not make sense to you in yours. So, please apply your common sense.

Tools

Our developers use Visual Studio as their IDE and Visual SourceSafe for source control.

All of our .NET application code and all of our stored procedures are kept in a SourceSafe project. Developers tend to work in Visual Studio and use the integration with SourceSafe to check files in and out etc.

Thus far we’ve used an exclusive lock approach to source control. So, a developer will check out the file they need to make changes to and hold a lock over that file until the changes are deployed.

However, as the team gets bigger this approach has started to run into problems – for example, where multiple developers are working on changes together, or where larger changes need to be made causing key files to be blocked for longer periods.

To get around these issues, we’re increasingly working on local copies of files and only checking those files out and merging in their changes later. I imagine we will shortly switch to an edit-merge-commit approach, and that will require us to look again at alternative source control tools (e.g. SourceGear’s Vault, Microsoft’s Visual Studio Team System or perhaps Subversion – we’d be interested to hear from anybody who’s had experience with any of these).

Release Manager

At the centre of our dev + test process is a tool we’ve built ourselves called the ‘Release Manager’.

This incorporates a simple task management tool, where tasks can be described and assigned to individual developers and testers. It also hooks into source control, and allows a developer to associate source code changes with the task they are working on.

This group of files, which we call a ‘package’, may include ASPX files, VB class files as well as scripts to create or replace stored procedures in the database.

The tool also incorporates reports which help us track tasks as they progress through the dev + test process. These are built using SQL Reporting Services.

Environments

We have four environments:

  1. Dev: this includes a shared database instance and local web servers for each developer.
  2. Test: this includes a production-like database (actually databases, as we now have multiple instances in production) and a separate web server.
  3. Stage: our pre-production environment, again with it’s own web server
  4. Production: our live site, which actually incorporates two environments currently, one in Wellington and one in Auckland.

Developers typically work on changes individually. We have a code-review process, so any code changes have two sets of eyes over them before they hit test.

Once a code change is completed, the developer will create the package in Release Manager and set the task to be ‘ready to test’ so it appears on the radar of the test team.

We have a web-based deployment tool which testers can use to deploy one or more packages into the test environment. This involves some Nant build scripts which get the source files for the selected packages, copy these into the test environment and then build the .NET assemblies on the test server. The build script also executes any associated database changes that are included, and then updates the status of the package/s to ‘in test’.

The deploy tool is able to use the data from Release Manager to identify any dependencies between packages. Where dependencies exist we’re forced to deploy packages in a certain order, but in the general case we’re able to deploy packages independently of each other, which provides a great degree of flexibility and allows us to respond quickly where required (e.g. when there is an urgent bug fix required).

Production

Once a package has been tested the test team use the same deploy tool to move the package into the stage environment ready for go-live.

From there the responsibility switches to the platform team, who manage our production web servers. They have automated scripts, again built using Nant, which deploy from stage to our production environment/s. These scripts update configuration files then copy the required production files to the various web server locations. It also manages the execution of database scripts. The idea is to get everything as close to the brink as possible (which is the time consuming part of the deploy process) and then tip everything over the edge as quickly as possible, so as to minimise disruption to the site.

Typically we do two production releases each day, although this number varies (up and down) depending on the specific packages. In most cases these releases are done without taking the site offline.

The bigger picture

Our dev + test process is just one part of a much bigger product management process, which is roughly represented by the diagram below (click for a larger view):

Product Management Process

The other parts of this process are probably fodder for a separate post, but it’s important to note that there is a loop involved here.

Most of the changes we make to the site are influenced heavily by previous changes. In many cases very recent changes. This only works like it does because our process allows us to iterate around this loop quickly and often.

While we don’t follow any formal agile methodology, our process is definitely lightweight. We don’t produce lots of documentation, which is not to say that we don’t design changes up-front, just that we don’t spend too much time translating that thinking into large documents (it’s not uncommon for screen designs to be whiteboard printouts for example).

While we do make larger changes from time to time (for example, the DVD release which went out last week) the vast majority of changes we make are small and seemingly insignificant. Again, this only works because each of these small changes is able to flow through with minimal friction added by the tools and processes.

I’d also hate to give you the impression that this process is perfect. There is massive room for improvement. The challenge for us is to continue to look for these opportunities.

More?

That’s it for Tim’s questions. I hope some of that was useful?

If you have any other questions, ask away. You can either place a comment below or contact me directly. My email address is in the sidebar to the right.

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值