mapreduce--使用自定义类做value

本文介绍如何在MapReduce框架下自定义类MyData用于存储手机号、上行流量、下行流量及总流量信息,并通过Map和Reduce任务实现流量数据的聚合。通过解析输入数据,将数据转化为MyData对象并进行输出,最后在Reducer阶段聚合相同手机号的数据流量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在mapreduce编程中,有挺多实现了Comparable, Writable接口的内置变量类型,比如
Text, IntWritable,LongWritable等等。
这次我要自己定义一个类,将它用作

设计自定义类MyData

按照需求,这个类应该有4个变量,分别记录手机号,上行流量,下行流量以及总流量。
这个类需要实现Writable接口,所以需要实现两个函数:

  1. write函数 ,将MyData数据序列化成为二进制数据流;
  2. readFields函数,从二进制数据流中取出MyData数据。

    要注意的有,write和readFileds两个函数写属性以及读属性的顺序以及类型不要弄错了。
    string类型使用UTF格式进行保存,所以使用writeUTF(string),readUTF(string)进行存取。
    至于long等类型数据则可以使用writeLong(long),readLong(long)进行存取。
    两个函数的参数分别为DataOutput以及DataInput。

还有个toString函数需要注意呀!toString里边怎么写的,在结果文件中就会是怎么写的哦!

package data;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.Writable;

public class MyData implements Writable{
    private String id;
    private long upPayload;
    private long downPayload;
    private long totalPayload;
    //构造函数
    public MyData(){}
    public MyData(String id, long upPayload, long downPayload) {
        this.id = id;
        this.upPayload = upPayload;
        this.downPayload = downPayload;
        this.totalPayload = upPayload + downPayload;
    }

    //deserialize the data
    public void readFields(DataInput in) throws IOException {
        // TODO Auto-generated method stub
        this.id = in.readUTF();
        this.upPayload = in.readLong();
        this.downPayload = in.readLong();
        this.totalPayload = in.readLong();
    }

    //serialize the data
    public void write(DataOutput out) throws IOException {
        // TODO Auto-generated method stub
        out.writeUTF(id);
        out.writeLong(upPayload);
        out.writeLong(downPayload);
        out.writeLong(totalPayload);

    }

    @Override
    public String toString() {
        return "[upPayload=" + upPayload
                + ", downPayload=" + downPayload + ", totalPayload="
                + totalPayload + "]";
    }
    ...//此处实现四个变量的get,set方法

}

MapReduce的设计

Mapper的设计

从文件中读取一行数据,用”\t”一一分割,从中得到手机号id,以及两个流量信息,并创建MyData保存数据。
因为想要试试自定义数据,所以map的输出设计为

public static class HadoopTest1Mapper extends Mapper<LongWritable, Text, Text, MyData>{

        public void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException{
            String strLine = value.toString();
            String[] tokens = strLine.split("\t");
            Text newKey = new Text(tokens[1]);
            MyData newValue = new MyData("", Long.parseLong(tokens[8]), Long.parseLong(tokens[9]));
            context.write(newKey, newValue);
        }

    }
Reducer的设计

把相同key的数据的流量加起来就是啦!
注意注意,是Iterable values;
Iterable是个接口,这样使用是Java的反射机制啦!
最后context写的时候是可以直接写MyData的哦!

public static class HadoopTest1Reducer extends Reducer<Text, MyData, Text, MyData>{

        public void reduce(Text key, Iterable<MyData> values, Context context) throws IOException, InterruptedException{
            long sumUp = 0;
            long sumDown = 0;
            for(MyData value : values){
                sumUp += value.getUpPayload();
                sumDown += value.getDownPayload();
            }
            MyData newValue = new MyData("", sumUp, sumDown);
            context.write(key, newValue);
        }
    }

main函数

public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        // TODO Auto-generated method stub
        String inputStr = "hdfs://127.0.0.1:9000/user/HTTP.dat";

        String outputStr = "hdfs://127.0.0.1:9000/user/HTTPresult";

        Configuration conf = new Configuration();
        Job job = new Job(conf, "Test1");
        job.setJarByClass(HadoopTest1.class);
        job.setNumReduceTasks(4);
        job.setMapperClass(HadoopTest1Mapper.class);    
        job.setReducerClass(HadoopTest1Reducer.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(MyData.class);

        FileInputFormat.addInputPath(job, new Path(inputStr));
        FileOutputFormat.setOutputPath(job, new Path(outputStr));

        job.waitForCompletion(true);
    }

实验运行与结果

我是在Eclipse的Maven项目里边运行的,关于具体怎么使用maven运行hadoop项目可以参考http://blog.youkuaiyun.com/jianjian1992/article/details/46957811
运行结果如下:
这里写图片描述

测试数据

1363157985066   13726230503 00-FD-07-A4-72-B8:CMCC  120.196.100.82  i02.c.aliimg.com        24  27  2481    24681   200
1363157995052   13826544101 5C-0E-8B-C7-F1-E0:CMCC  120.197.40.4            4   0   264 0   200
1363157991076   13926435656 20-10-7A-28-CC-0A:CMCC  120.196.100.99          2   4   132 1512    200
1363154400022   13926251106 5C-0E-8B-8B-B1-50:CMCC  120.197.40.4            4   0   240 0   200
1363157993044   18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99  iface.qiyi.com  视频网站    15  12  1527    2106    200
1363157995074   84138413    5C-0E-8B-8C-E8-20:7DaysInn  120.197.40.4    122.72.52.12        20  16  4116    1432    200
1363157993055   13560439658 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          18  15  1116    954 200
1363157995033   15920133257 5C-0E-8B-C7-BA-20:CMCC  120.197.40.4    sug.so.360.cn   信息安全    20  20  3156    2936    200
1363157983019   13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82          4   0   240 0   200
1363157984041   13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4    s19.cnzz.com    站点统计    24  9   6960    690 200
1363157973098   15013685858 5C-0E-8B-C7-F7-90:CMCC  120.197.40.4    rank.ie.sogou.com   搜索引擎    28  27  3659    3538    200
1363157986029   15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99  www.umeng.com   站点统计    3   3   1938    180 200
1363157992093   13560439658 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          15  9   918 4938    200
1363157986041   13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4            3   3   180 180 200
1363157984040   13602846565 5C-0E-8B-8B-B6-00:CMCC  120.197.40.4    2052.flash2-http.qq.com 综合门户    15  12  1938    2910    200
1363157995093   13922314466 00-FD-07-A2-EC-BA:CMCC  120.196.100.82  img.qfc.cn      12  12  3008    3720    200
1363157982040   13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99  y0.ifengimg.com 综合门户    57  102 7335    110349  200
1363157986072   18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99  input.shouji.sogou.com  搜索引擎    21  18  9531    2412    200
1363157990043   13925057413 00-1F-64-E1-E6-9A:CMCC  120.196.100.55  t3.baidu.com    搜索引擎    69  63  11058   48243   200
1363157988072   13760778710 00-FD-07-A4-7B-08:CMCC  120.196.100.82          2   2   120 120 200
1363157985066   13726238888 00-FD-07-A4-72-B8:CMCC  120.196.100.82  i02.c.aliimg.com        24  27  2481    24681   200
1363157993055   13560436666 C4-17-FE-BA-DE-D9:CMCC  120.196.100.99          18  15  1116    954 200
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值