浅谈数据同步之道

数据同步,顾名思义就是不同系统的数据进行同步处理。而业务系统所涉及的数据库同步是重中之重,虽然大部分数据库都提供了导入导出的工具,但是数据存储到各个地方,Hive、Hbase、MySQL、Oracle 等各种各样的不同数据库,然而要把数据同步到指定不同类型的存储是非常麻烦。那该如何统一实现数据源同步?下面介绍几种常用的同步的方案和工具。

1、Sqoop

Apache Sqoop 是一种工具,用于在 Apache Hadoop 和外部数据存储(如关系数据库,企业数据仓库)之间高效传输批量数据。

Sqoop 用于将数据从外部数据存储导入 Hadoop Hdfs 或 Hive 和 HBase 等相关 Hadoop 生态系统。同样,Sqoop 还可用于从 Hadoop 或其生态系统中提取数据,并将其导出到外部数据存储区,如关系数据库、数据仓库。Sqoop 适用于 Oracle,MySQL,Postgres 等关系数据库。

Sqoop 数据导入命令示例如下:

sqoop import -connect jdbc:mysql://localhost:3306/sqoop -username root -password 123456 -table emp_etl -m 3 -hive-import -create-hive-table  -hive-table  emp_mysql

通过命令行界面执行 Sqoop 命令。也可以使用 Java API 访问 Sqoop。Sqoop 解析命令行生成 MapRedure 并只启动 Hadoop Map 作业以导入或导出数据,因为只有在需要聚合时才需要 Reduce 阶段。Sqoop 只是导入和导出数据, 它没有做任何聚合。

映射作业根据用户定义的数量(-m 3)启动多个映射器。对于 Sqoop 导入,将为每个映射器任务分配一部分要导入的数据。Sqoop 在映射器之间平均分配输入数据以获得高性能。然后,每个映射器使用 JDBC 创建与数据库的连接,并获取由 Sqoop 分配的数据部分,将其写入 HDFS 或 Hive 或 HBase。

2、Datax

DataX 是阿里开发的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle 等)、HDFS、Hive、ODPS、HBase、FTP 等各种异构数据源之间稳定高效的数据同步功能。


640?wx_fmt=png

DataX 本身作为离线数据同步框架,采用 Framework + plugin 架构构建。将数据源读取和写入抽象成为 Reader/Writer 插件,纳入到整个同步框架中。

640?wx_fmt=png

Reader:为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。

Writer: 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。

Framework:用于连 接reader 和writer ,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

Datax 使用比较简单,只下载 Datax 解压,配置需要运行环境,通过命令运行写好的 json 文件既可以执行任务,另外可以通过二次开发插件支持新的数据源类型,易拓展。


 

3、Canal

无论是 Sqoop 还是 Datax 都是属于离线同步, 不支持实时的数据抽取。这里说个 MySQL 数据库的同步组件 Canal,非常便捷地将 MySQL 中的数据抽取到任意目标存储中。

原理就是 Canal 伪装成 MySQL 从节点,读取 MySQL 的 binlog(一个二进制格式的文件,它记录了数据库的所有改变,并以二进制的形式保存在磁盘中。),生成消息,客户端订阅这些数据变更消息,处理并存储。只要开发一个 Canal 客户端就可以解析出 MySQL 的操作,再将这些数据发送到大数据流计算处理引擎,即可以实现对 MySQL 实时处理。

4、kettle

Kettle 是一款开源的 ETL 工具,实现对各种数据源读取,操作和写入数据,Kettle 无需安装解压即可使用,可通过客户端进行配置和执行作业。Kettle 中有两种脚本文件,transformation 和  job,transformation 完成针对数据的基础转换,job 则完成整个工作流的控制。

5、Informatica PowerCenter

Informatica PowerCenter 是世界级的 企业数据集成平台,从异构的已有系统和数据源中抽取数据,用来构建和管理企业的数据仓库,从而帮助企业做出快速、正确的决策。此产品为满足企业级要求而设计,可以提供企业部门的数据和非关系型数据之间的集成,如 XML、网站日志、关系型数据、主机和遗留系统等数据源。

小结

那我们该如何选择合适同步的工具。大数据平台是与 Hadoop 集群相挂钩,在离线同步一般选择 Sqoop,Sqoop 从一开始就是为大数据平台的数据采集业务服务,而且作为 Apache 顶级的项目,Sqoop 比起 Datax 更加可靠,如果涉及阿里自身的数据库系列选择 Datax 是一个不错的选择。在实时同步数据,一般采用 Kafka 作为中间组件,跟 Canal 结合实现 MySQL 到 Hive 增量数据同步。kettle 和 Informatica PowerCenter 一般在建设数仓中使用,通过客户端配置 ETL 任务定制。


推荐阅读:

C,Java,Python,这些名字背后的江湖!

白话数据建模

大数据时代的结构化存储--HBase

640?wx_fmt=png                                                                   喜欢就点一下【在看】呗~

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据设计与管理理论介绍数据设计原则、数据模型及数据管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据设计与实现设计数据表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值