题目大意:给出一些作物,这些作物要不就是种在A地,要不就是种在B地,有些作物种在一起会有额外收成。问最多可以获得多少收成。
思路:最小割模型,与S集相连的点都是种在A地的点,与T集相连的点都是种在B地的点。中间随便乱搞一下,总之最后就是所有收成-最大流就是最后答案。
CODE:
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 3010
#define MAXE 5000010
#define S 0
#define T (MAX - 1)
#define INF 0x3f3f3f3f
using namespace std;
struct MaxFlow{
int head[MAX],total;
int next[MAXE],aim[MAXE],flow[MAXE];
int deep[MAX];
MaxFlow() {
total = 1;
}
void Add(int x,int y,int f) {
next[++total] = head[x];
aim[total] = y;
flow[total] = f;
head[x] = total;
}
void Insert(int x,int y,int f) {
Add(x,y,f);
Add(y,x,0);
}
bool BFS() {
static queue<int> q;
while(!q.empty()) q.pop();
memset(deep,0,sizeof(deep));
deep[S] = 1;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = next[i])
if(flow[i] && !deep[aim[i]]) {
deep[aim[i]] = deep[x] + 1;
q.push(aim[i]);
if(aim[i] == T) return true;
}
}
return false;
}
int Dinic(int x,int f) {
if(x == T) return f;
int temp = f;
for(int i = head[x]; i; i = next[i])
if(flow[i] && temp && deep[aim[i]] == deep[x] + 1) {
int away = Dinic(aim[i],min(temp,flow[i]));
if(!away) deep[aim[i]] = 0;
flow[i] -= away;
flow[i^1] += away;
temp -= away;
}
return f - temp;
}
}solver;
int cnt,pos;
int asks,ans;
int main()
{
cin >> cnt;
pos = cnt;
for(int x,i = 1; i <= cnt; ++i) {
scanf("%d",&x);
ans += x;
solver.Insert(S,i,x);
}
for(int x,i = 1; i <= cnt; ++i) {
scanf("%d",&x);
ans += x;
solver.Insert(i,T,x);
}
cin >> asks;
for(int num,x,i = 1; i <= asks; ++i) {
scanf("%d",&num);
pos += 2;
scanf("%d",&x);
solver.Insert(S,pos - 1,x);
ans += x;
scanf("%d",&x);
solver.Insert(pos,T,x);
ans += x;
for(int j = 1; j <= num; ++j) {
scanf("%d",&x);
solver.Insert(pos - 1,x,INF);
solver.Insert(x,pos,INF);
}
}
int max_flow = 0;
while(solver.BFS())
max_flow += solver.Dinic(S,INF);
cout << ans - max_flow << endl;
return 0;
}