朋友们,如需转载请标明出处:http://blog.youkuaiyun.com/jiangjunshow
众所周知,强化学习(Reinforcement Learning)是一种人工智能训练技术,无论是在棋牌游戏方面打败人类选手的机器人,还是在训练自动驾驶系统方面,强化学习都起着至关重要的作用。
近日,Alphabet 旗下的 DeepMind 发表了一篇由 27 位研究人员共同完成的论文,详细介绍了一个名为 OpenSpiel 的针对游戏的强化学习框架——这正是 DeepMind 的长处所在。
OpenSpiel 厉害在哪儿?
这个名叫 OpenSpiel 的框架可以看作是一个强化学习环境和算法的集合(其中大部分环境和算法已经进行了全面测试),可以用于通用强化学习的研究和游戏的搜索/规划研究;它还为分析学习动态和其他常见评估指标提供了工具。
OpenSpiel 旨在许多不同的游戏中促进多智能体强化学习,重点是学习,而不是竞争;而且,该框架的建设基于两个重要标准,即简单和轻量——简单主要体现在编程语言方面,即便是来自不同领域的研究人员也能轻易理解;轻量则体现在 OpenSpiel 将依赖关系保持在最低限度,降低了出现兼容性问题的可能性。
就目前而言,OpenSpiel 框架中包含了 28 款游戏和 24 种算法。正如“Spiel(棋牌游戏)”一词所含之意那样,该框架支持的也都是相关的游戏;而且,这些游戏也包括多种博弈方式,比如,常和博弈、零和博弈、协调博弈和一般博弈。在编程语言方面,OpenSpiel 的游戏通过 C++ 来实现、算法则通过 C++ 和 Python 来实现,代码的一个子集也被移植到 Swift。
不过,DeepMind 的研究人员指出,OpenSpiel 只在 Linux 系统上进行了测试(Debian 10 和 Ubuntu 19.04),但由于 MacOS 和 Windows 上可自由使用代码,Openspiel 在这些平台上编译和运行时应该也不会出现问题。

DeepMind发布OpenSpiel,一个针对游戏的强化学习框架,包含28款游戏和24种算法,旨在促进多智能体学习研究。框架采用C++、Python和Swift实现,强调简单性和轻量化。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



