hdu_1711_kmp板子

本文介绍了一种用于字符串匹配的高效算法——KMP算法,并通过一个具体的编程实例详细展示了该算法的工作原理及其应用过程。该算法能够有效解决在大规模数据中寻找特定子序列的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Number Sequence

Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
Source
HDU 2007-Spring Programming Contest

#include<bits/stdc++.h>
using namespace std;
const int N=(int)1e6+10;
int s[N],st[N],n,m,nxt[N];
void getnext()
{
    int i=0,j=-1;
    nxt[0]=-1;
    while(i<m)
    {
        if(j==-1||st[i]==st[j])
        {
            i++,j++;
            nxt[i]=j;
        }
        else j=nxt[j];
    }
}
int kmp(int *s,int *st)
{
    getnext();
    int i=0,j=0;
    while(i<n)
    {
        if(j==-1||s[i]==st[j])
        {
            i++,j++;
        }
        else
            j=nxt[j];
        if(j==m)
            return i-m+1;
    }
    return -1;
}
int main()
{
    int t,i,j;
    while(cin>>t)
    {
        while(t--)
        {
            scanf("%d%d",&n,&m);
            for(i=0;i<n;i++) scanf("%d",s+i);
           for(i=0;i<m;i++) scanf("%d",st+i);
           cout<<kmp(s,st)<<endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值