洛谷 P3956 棋盘 题解(最容易理解版本之一)(暴力)

题目描述

有一个 m×m 的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在要从棋盘的最左上角走到棋盘的最右下角。

任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上、下、左、右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你不需要花费金币;如果不同,则你需要花费 1 个金币。

另外,你可以花费 2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个魔法不能连续使用, 而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走到了这个暂时有颜色的格子上,你就不能继续使用魔法; 只有当你离开这个位置,走到一个本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔法使得变为有颜色的格子)时,这个格子恢复为无色。

现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?

输入格式

第一行包含两个正整数 m,n,以一个空格分开,分别代表棋盘的大小,棋盘上有颜色的格子的数量。

接下来的 n 行,每行三个正整数 x,y,c, 分别表示坐标为 (x,y) 的格子有颜色

其中 1 代表黄色,0 代表红色。 相邻两个数之间用一个空格隔开。 棋盘左上角的坐标为 (1,1),右下角的坐标为 (m,m)。

棋盘上其余的格子都是无色。保证棋盘的左上角,也就是 (1,1) 一定是有颜色的。

输出格式

一个整数,表示花费的金币的最小值,如果无法到达,输出 -1

P8865 种花 是一道与动态规划相关的目,其核心思想与“摆花”问题类似,但又有所扩展,涉及了组合数学与多重背包问题的结合。 ### 解思路 目可以理解为:有 $ n $ 种花,每种花有 $ a[i] $ 盆,要求从中选出 $ m $ 盆花排成一排。同一种花必须连续摆放,并且种类按照编号递增排列。求满足条件的排列方式总数。 这个问题可以通过动态规划来解决。定义状态 $ dp[i][j] $ 表示前 $ i $ 种花中选 $ j $ 盆花的方案数。 状态转移方程为: $$ dp[i][j] = \sum_{k=0}^{\min(a[i], j)} dp[i-1][j-k] $$ 其中 $ k $ 表示第 $ i $ 种花选取了 $ k $ 盆,$ a[i] $ 表示第 $ i $ 种花的大数量。 初始状态为 $ dp[0][0] = 1 $,表示不选任何花时只有一种方案。 为了优化时间复杂度,可以使用滚动数组来减少空间开销。同时,由于每次状态转移需要累加多个前一状态的值,可以利用前缀和优化来减少重复计算。 ### 代码实现 ```cpp #include <bits/stdc++.h> using namespace std; const int N = 210, mod = 1000007; int n, m; int a[N]; int dp[N][N]; int main() { cin >> n >> m; for (int i = 1; i <= n; i++) cin >> a[i]; // 初始化,前0种花选0盆的方案数为1 dp[0][0] = 1; for (int i = 1; i <= n; i++) { for (int j = 0; j <= m; j++) { // 枚举第i种花选取的数量 for (int k = 0; k <= min(a[i], j); k++) { dp[i][j] = (dp[i][j] + dp[i-1][j - k]) % mod; } } } cout << dp[n][m] << endl; return 0; } ``` 上述代码中,外层循环遍历每种花,内层循环遍历可选的花盆数,内层循环则枚举当前花选取的数量。通过三重循环完成状态转移。 为了优化性能,可以进一步优化内层的循环,通过前缀和预处理 $ dp[i-1][j-k] $ 的累加值,避免重复计算。 ### 优化思路 - **空间优化**:使用滚动数组,将二维数组优化为一维数组,因为每次状态转移只依赖上一层的结果。 - **时间优化**:使用前缀和优化,避免每次都要循环累加上一层的状态值。 ###
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值