
mapreduce
利剑 -~
追求卓越成功就会出其不意找上门
展开
-
hadoop join
在介绍这个实例之前,请各位参考:http://bjyjtdj.iteye.com/blog/1453410。 reduce side join是一种最简单的join方式,其主要思想如下: 在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件Fil...转载 2018-07-30 22:08:07 · 241 阅读 · 0 评论 -
hadoop join之map side join
在本例中,我们仍然采用上一例中的数据文件。之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到...转载 2018-07-30 22:51:23 · 484 阅读 · 1 评论 -
hadoop join之semi join
SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在m...转载 2018-07-31 09:29:09 · 276 阅读 · 0 评论 -
MapReduce 中的两表 join 几种方案简介
1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的。而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧。 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法。 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2....转载 2018-07-31 10:14:21 · 333 阅读 · 0 评论